Spaces:
Running
Running
File size: 7,053 Bytes
618f8fd b2c0464 618f8fd bc99a91 b2c0464 618f8fd b2c0464 618f8fd b2c0464 bc99a91 b2c0464 618f8fd b2c0464 618f8fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import gradio as gr
import requests
from theme import logo, theme
DEFAULT_DEPLOYMENT_URL = "https://api.app.deeploy.ml/workspaces/708b5808-27af-461a-8ee5-80add68384c7/deployments/a0a5d36d-ede6-4c53-8705-e4a8727bb0b7/predict"
DEFAULT_PROMPTS = [
["What are requirements for a high-risk AI system?"],
["Can you help me understand AI content moderation guidelines and limitations?"],
]
MAX_TOKENS = 800
TEMPERATURE = 0.7
TOP_P = 0.95
ERROR_401 = "Error: Invalid Deployment token"
ERROR_403 = "Error: No valid permissions for this Deployment token"
ERROR_404 = "Error: Deployment not found. Check the API URL."
indexed_prediction_log_ids = {}
def respond(
message: str,
history: list,
api_url: str,
deployment_token: str,
):
formatted_history = []
if history and isinstance(history[0], list):
for user_msg, assistant_msg in history:
if user_msg:
formatted_history.append(message_from_user(user_msg))
if assistant_msg:
formatted_history.append(message_from_assistant(assistant_msg))
else:
formatted_history = history
messages = [message_from_system("Your are a friendly Chatbot.")]
messages.extend(formatted_history)
if message:
messages.append(message_from_user(message))
headers = get_headers(deployment_token)
payload = get_prediction_payload(messages)
predict_url = get_predict_url(api_url)
response = requests.post(predict_url, json=payload, headers=headers)
new_history = formatted_history.copy()
if message:
new_history.append(message_from_user(message))
if response.status_code != 201:
append_error_to_history(new_history, response)
return new_history
try:
response_data = response.json()
if isinstance(response_data, dict) and "choices" in response_data:
if (
len(response_data["choices"]) > 0
and "message" in response_data["choices"][0]
):
content = response_data["choices"][0]["message"].get("content", "")
prediction_log_id = response_data["predictionLogIds"][0]
indexed_prediction_log_ids[len(new_history)] = prediction_log_id
new_history.append(message_from_assistant(content))
return new_history
else:
new_history.append(
message_from_assistant(
f"Error: Unexpected response format: {response_data}"
)
)
return new_history
except Exception as error:
new_history.append(
message_from_assistant(f"Error parsing API response: {str(error)}")
)
return new_history
def evaluate(
like_data: gr.LikeData,
api_url: str,
deployment_token: str,
) -> str | None:
prediction_log_id = indexed_prediction_log_ids.get(like_data.index)
headers = get_headers(deployment_token)
evaluate_url = get_evaluation_url(api_url, prediction_log_id)
evaluation_payload = get_evaluation_payload(like_data.liked)
response = requests.post(evaluate_url, json=evaluation_payload, headers=headers)
if response.status_code != 201:
error_msg = "Error: Failed to evaluate the prediction, does your token have the right permissions?"
return error_msg
def get_prediction_payload(messages: list) -> dict:
return {
"messages": messages,
"max_tokens": MAX_TOKENS,
"temperature": TEMPERATURE,
"top_p": TOP_P,
}
def get_evaluation_payload(liked: bool) -> dict:
if liked:
return {"agree": True, "comment": "Clicked thumbs up in the chat"}
else:
return {
"agree": False,
"comment": "Clicked thumbs down in the chat",
"desiredOutput": {"predictions": ["A new example output"]},
}
def get_headers(bearer_token: str) -> dict:
return {
"Authorization": f"Bearer {bearer_token}",
"Content-Type": "application/json",
}
def append_error_to_history(history: list, response: requests.Response) -> None:
if response.status_code == 401:
history.append(message_from_assistant(ERROR_401))
elif response.status_code == 403:
history.append(message_from_assistant(ERROR_403))
elif response.status_code == 404:
history.append(message_from_assistant(ERROR_404))
else:
history.append(
message_from_assistant(
f"Error: API returned status code {response.status_code}"
)
)
def message_from_assistant(message: str) -> dict:
return {"role": "assistant", "content": message}
def message_from_user(message: str) -> dict:
return {"role": "user", "content": message}
def message_from_system(message: str) -> dict:
return {"role": "system", "content": message}
def get_base_url(url: str) -> str:
if url.endswith("/predict"):
return url.split("/predict")[0]
else:
if url.endswith("/"):
return url[:-1]
else:
return url
def get_predict_url(url: str) -> str:
return get_base_url(url) + "/predict"
def get_evaluation_url(url: str, prediction_log_id: str) -> str:
return (
get_base_url(url)
+ "/predictionLogs/"
+ prediction_log_id
+ "/evaluatePrediction"
)
with gr.Blocks(theme=theme, mode="light") as demo:
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
gr.HTML(f"""
<div style="display: flex; align-items: center; column-gap: 8px;">
{logo}
<h1 style="margin: 0;">Deeploy OpenAI</h1>
</div>
""")
api_url = gr.Textbox(
value=DEFAULT_DEPLOYMENT_URL, label="Deeploy API URL", type="text"
)
deployment_token = gr.Textbox(label="Deployment token", type="password")
with gr.Column(scale=2):
chatbot = gr.Chatbot(
height=600,
type="messages",
render_markdown=True,
show_copy_button=True,
)
msg = gr.Textbox(
label="Message",
placeholder="Type your message here...",
show_label=False,
submit_btn="Send",
)
gr.Examples(
examples=DEFAULT_PROMPTS,
inputs=[msg],
)
msg.submit(
respond,
inputs=[msg, chatbot, api_url, deployment_token],
outputs=chatbot,
).then(lambda: "", None, msg, queue=False)
error_output = gr.Textbox(visible=False)
chatbot.like(
evaluate,
inputs=[api_url, deployment_token],
outputs=[error_output],
like_user_message=False,
).success(
lambda msg: gr.Info(msg) if msg else None,
[error_output],
None,
)
if __name__ == "__main__":
demo.launch()
|