Spaces:
Running
on
Zero
Running
on
Zero
File size: 29,068 Bytes
edced0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 |
# Copyright (c) 2023-2024 DeepSeek.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
# the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
from dataclasses import dataclass
from typing import Dict, Tuple, List, Literal, Optional
import math
import torch
from torch.nn.utils.rnn import pad_sequence
import torchvision.transforms as T
from transformers import LlamaTokenizerFast
from transformers.processing_utils import ProcessorMixin
from PIL import Image, ImageOps
from .conversation import get_conv_template
def select_best_resolution(image_size, candidate_resolutions):
# used for cropping
original_width, original_height = image_size
best_fit = None
max_effective_resolution = 0
min_wasted_resolution = float("inf")
for width, height in candidate_resolutions:
scale = min(width / original_width, height / original_height)
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
wasted_resolution = (width * height) - effective_resolution
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
max_effective_resolution = effective_resolution
min_wasted_resolution = wasted_resolution
best_fit = (width, height)
return best_fit
class DictOutput(object):
def keys(self):
return self.__dict__.keys()
def __getitem__(self, item):
return self.__dict__[item]
def __setitem__(self, key, value):
self.__dict__[key] = value
# 对于inference sample也可以维护input_ids,反正最后不会用到
@dataclass
class VLChatProcessorOutput(DictOutput):
sft_format: str
input_ids: torch.LongTensor
target_ids: torch.LongTensor
images: torch.Tensor
images_seq_mask: torch.BoolTensor
images_spatial_crop: torch.LongTensor
num_image_tokens: List[int]
def __len__(self):
return len(self.input_ids)
@dataclass
class BatchCollateOutput(DictOutput):
sft_format: List[str]
input_ids: torch.LongTensor
labels: torch.LongTensor
images: torch.Tensor
attention_mask: torch.Tensor
images_seq_mask: torch.BoolTensor
images_spatial_crop: torch.LongTensor
seq_lens: List[int]
def to(self, device, dtype=torch.bfloat16):
self.input_ids = self.input_ids.to(device)
self.labels = self.labels.to(device)
self.attention_mask = self.attention_mask.to(device)
self.images_seq_mask = self.images_seq_mask.to(device)
self.images_spatial_crop = self.images_spatial_crop.to(device)
self.images = self.images.to(device=device, dtype=dtype)
return self
class ImageTransform(object):
def __init__(
self,
mean: Optional[Tuple[float, float, float]] = (0.5, 0.5, 0.5),
std: Optional[Tuple[float, float, float]] = (0.5, 0.5, 0.5),
normalize: bool = True
):
self.mean = mean
self.std = std
self.normalize = normalize
transform_pipelines = [
T.ToTensor()
]
if normalize:
transform_pipelines.append(T.Normalize(mean, std))
self.transform = T.Compose(transform_pipelines)
def __call__(self, pil_img: Image.Image):
x = self.transform(pil_img)
return x
class DeepseekVLV2Processor(ProcessorMixin):
tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
attributes = ["tokenizer"]
def __init__(
self,
tokenizer: LlamaTokenizerFast,
candidate_resolutions: Tuple[Tuple[int, int]],
patch_size: int,
downsample_ratio: int,
image_mean: Tuple[float, float, float] = (0.5, 0.5, 0.5),
image_std: Tuple[float, float, float] = (0.5, 0.5, 0.5),
normalize: bool = True,
image_token: str = "<image>",
pad_token: str = "<|▁pad▁|>",
add_special_token: bool = False,
sft_format: str = "deepseek",
mask_prompt: bool = True,
ignore_id: int = -100,
**kwargs,
):
self.candidate_resolutions = candidate_resolutions
self.image_size = candidate_resolutions[0][0]
self.patch_size = patch_size
self.image_mean = image_mean
self.image_std = image_std
self.normalize = normalize
self.downsample_ratio = downsample_ratio
self.image_transform = ImageTransform(mean=image_mean, std=image_std, normalize=normalize)
self.tokenizer = tokenizer
self.tokenizer.padding_side = 'left' # must set this,padding side with make a difference in batch inference
# add the pad_token as special token to use 'tokenizer.pad_token' and 'tokenizer.pad_token_id'
if tokenizer.pad_token is None:
self.tokenizer.add_special_tokens({'pad_token': pad_token})
print(f"Add pad token = ['{pad_token}'] to the tokenizer\n"
f"{pad_token}:{tokenizer.encode(pad_token, add_special_tokens=False)[0]}")
# add image token
image_token_id = self.tokenizer.vocab.get(image_token)
if image_token_id is None:
special_tokens = [image_token]
special_tokens_dict = {"additional_special_tokens": special_tokens}
self.tokenizer.add_special_tokens(special_tokens_dict)
self.image_token_id = self.tokenizer.vocab.get(image_token)
print(f"Add image token = ['{image_token}'] to the tokenizer\n"
f"{image_token}:{tokenizer.encode(image_token, add_special_tokens=False)[0]}")
# add five special tokens for grounding-related tasks
# <|ref|>, <|/ref|>, <|det|>, <|/det|>, <|grounding|>
special_tokens = ['<|ref|>', '<|/ref|>', '<|det|>', '<|/det|>', '<|grounding|>']
special_tokens_dict = {"additional_special_tokens": special_tokens}
self.tokenizer.add_special_tokens(special_tokens_dict)
print(f"Add grounding-related tokens = {special_tokens} to the tokenizer with input_ids\n"
f"<|ref|>:{tokenizer.encode('<|ref|>', add_special_tokens=False)[0]}\n"
f"<|/ref|>:{tokenizer.encode('<|/ref|>', add_special_tokens=False)[0]}\n"
f"<|det|>:{tokenizer.encode('<|det|>', add_special_tokens=False)[0]}\n"
f"<|/det|>:{tokenizer.encode('<|/det|>', add_special_tokens=False)[0]}\n"
f"<|grounding|>:{tokenizer.encode('<|grounding|>', add_special_tokens=False)[0]}")
# add special tokens for SFT data
special_tokens = ["<|User|>", "<|Assistant|>"]
special_tokens_dict = {"additional_special_tokens": special_tokens}
self.tokenizer.add_special_tokens(special_tokens_dict)
print(f"Add chat tokens = {special_tokens} to the tokenizer with input_ids\n"
f"<|User|>:{tokenizer.encode('<|User|>', add_special_tokens=False)[0]}\n"
f"<|Assistant|>:{tokenizer.encode('<|Assistant|>', add_special_tokens=False)[0]}\n")
self.image_token = image_token
self.pad_token = pad_token
self.add_special_token = add_special_token
self.sft_format = sft_format
self.mask_prompt = mask_prompt
self.ignore_id = ignore_id
super().__init__(
tokenizer,
**kwargs,
)
def new_chat_template(self):
conv = get_conv_template(self.sft_format)
return conv
def format_messages(
self,
conversations: List[Dict[str, str]],
sft_format: str = "deepseek",
system_prompt: str = "",
):
"""
Applies the SFT template to conversation.
Args:
conversations (List[Dict]): A List of messages.
sft_format (str, optional): The format of the SFT template to use. Defaults to "deepseek".
system_prompt (str, optional): The system prompt to use in the SFT template. Defaults to "".
Returns:
sft_prompt (str): The formatted text.
"""
conv = get_conv_template(sft_format)
conv.set_system_message(system_prompt)
for message in conversations:
conv.append_message(message["role"], message["content"].strip())
sft_prompt = conv.get_prompt().strip()
return sft_prompt
def format_messages_v2(self, messages, pil_images, systems=None):
"""play the role of format_messages_v2 and get_images_info in the last version"""
tokenized_data = []
masked_tokenized_data = [] # labels
images_list = []
images_seq_mask = []
images_spatial_crop = []
num_image_tokens = []
image_index = 0
conv = get_conv_template(self.sft_format)
conv_system_message = conv.system_message
for idx, message in enumerate(messages):
if idx == 0:
tokenized_data += [self.bos_id]
masked_tokenized_data += [self.bos_id]
images_seq_mask += [False]
conv.system_message = conv_system_message
else:
conv.system_message = ''
if message['role'] == conv.roles[0] or message['role'] == "user":
conv.reset_message()
conv.append_message(conv.roles[0], str(message['content']).strip())
conv.append_message(conv.roles[1], '')
formatted_question = conv.get_prompt()
tokenized_str, images, seq_mask, spatial_crop, n_image_tokens = self.tokenize_with_images(
formatted_question,
pil_images[image_index: image_index + formatted_question.count(self.image_token)],
bos=False,
eos=False,
cropping=len(pil_images) <= 2
)
image_index += formatted_question.count(self.image_token)
tokenized_data += tokenized_str
if self.mask_prompt:
masked_tokenized_data += [self.ignore_id] * len(tokenized_str)
else:
masked_tokenized_data += tokenized_str
images_list += images
images_seq_mask += seq_mask
images_spatial_crop += spatial_crop
num_image_tokens += n_image_tokens
elif message['role'] == conv.roles[1] or message['role'] == "assistant":
formatted_answer = message['content'].strip()
assert formatted_answer.count(
self.image_token) == 0, f"there should be no {self.image_token} in the assistant's reply, but got {messages}"
tokenized_str, images, seq_mask, spatial_crop, n_image_tokens = self.tokenize_with_images(
formatted_answer,
[],
bos=False,
eos=True,
cropping=len(pil_images) <= 2)
tokenized_data += tokenized_str
masked_tokenized_data += tokenized_str
images_seq_mask += seq_mask
elif message['role'] == 'system' or message['role'] == 'deepseekapi-sys':
# 如果message里面有system,那就只允许出现在message的第一句,同时conv原本的system就会失效
assert idx == 0, 'system information should only exist in the begining of the conversation'
formatted_system = message['content'].strip()
tokenized_str = self.encode(formatted_system, bos=False, eos=False)
tokenized_data += tokenized_str
if self.mask_prompt:
masked_tokenized_data += [self.ignore_id] * len(tokenized_str)
else:
masked_tokenized_data += tokenized_str
seq_mask = [False] * len(tokenized_str)
images_seq_mask += seq_mask
else:
assert False, f"Unknown role: {message['role']}"
assert len(tokenized_data) == len(
images_seq_mask), f"format_messages_v2: tokenized_str's length {len(tokenized_str)} is not equal to imags_seq_mask's length {len(images_seq_mask)}"
assert len(images_spatial_crop) == len(num_image_tokens), f"image number should be compatible"
return tokenized_data, masked_tokenized_data, images_list, images_seq_mask, images_spatial_crop, num_image_tokens
def format_prompts(
self,
prompts: str,
sft_format: str = "deepseek",
system_prompt: str = "",
):
"""
Applies the SFT template to prompts.
Args:
prompts (str): the non-sft formatted prompt;
sft_format (str, optional): The format of the SFT template to use. Defaults to "deepseek".
system_prompt (str, optional): The system prompt to use in the SFT template. Defaults to "".
Returns:
sft_prompt (str): The formatted text.
"""
conv = get_conv_template(sft_format)
conv.set_system_message(system_prompt)
conv.append_message(conv.roles[0], prompts.strip())
conv.append_message(conv.roles[1], "")
sft_prompt = conv.get_prompt().strip()
return sft_prompt
@property
def bos_id(self):
return self.tokenizer.bos_token_id
@property
def eos_id(self):
return self.tokenizer.eos_token_id
@property
def pad_id(self):
return self.tokenizer.pad_token_id
def encode(self, text: str, bos: bool = True, eos: bool = False):
t = self.tokenizer.encode(text, add_special_tokens=False)
if bos:
t = [self.bos_id] + t
if eos:
t = t + [self.eos_id]
return t
def decode(self, t: List[int], **kwargs) -> str:
return self.tokenizer.decode(t, **kwargs)
def process_one(
self,
prompt: str = None,
conversations: List[Dict[str, str]] = None,
images: List[Image.Image] = None,
apply_sft_format: bool = False,
inference_mode: bool = True,
system_prompt: str = "",
**kwargs,
):
"""
Args:
prompt (str): the formatted prompt;
conversations (List[Dict]): conversations with a list of messages;
images (List[ImageType]): the list of images;
apply_sft_format (bool): if prompt is not None, then apply the SFT format to prompt;
if conversations is not None, then it will always apply the SFT format to conversations;
inference_mode (bool): if True, then remove the last eos token;
system_prompt (str): the system prompt;
**kwargs:
Returns:
outputs (BaseProcessorOutput): the output of the processor,
- input_ids (torch.LongTensor): [N + image tokens]
- target_ids (torch.LongTensor): [N + image tokens]
- images (torch.FloatTensor): [n_images, 3, H, W]
- image_id (int): the id of the image token
- num_image_tokens (List[int]): the number of image tokens
"""
assert (
prompt is None or conversations is None
), "prompt and conversations cannot be used at the same time."
if prompt is None:
# apply sft format
sft_format = self.format_messages(
conversations=conversations,
sft_format=self.sft_format,
system_prompt=system_prompt,
)
tokenized_str, masked_tokenized_str, images_list, images_seq_mask, images_spatial_crop, num_image_tokens = self.format_messages_v2(
conversations, images)
else:
if apply_sft_format:
sft_format = self.format_prompts(
prompts=prompt,
sft_format=self.sft_format,
system_prompt=system_prompt
)
else:
sft_format = prompt
tokenized_str, images_list, images_seq_mask, images_spatial_crop, num_image_tokens = self.tokenize_with_images(
sft_format, images, bos=True, eos=True, cropping=len(images) <= 2)
masked_tokenized_str = []
for token_index in tokenized_str:
if token_index != self.image_token_id:
masked_tokenized_str.append(token_index)
else:
masked_tokenized_str.append(self.ignore_id)
assert len(tokenized_str) == len(images_seq_mask) == len(masked_tokenized_str), \
(f"tokenized_str's length {len(tokenized_str)}, input_ids' length {len(masked_tokenized_str)}, "
f"imags_seq_mask's length {len(images_seq_mask)}, are not equal")
input_ids = torch.LongTensor(tokenized_str)
target_ids = torch.LongTensor(masked_tokenized_str)
images_seq_mask = torch.tensor(images_seq_mask, dtype=torch.bool)
# set input_ids < 0 | input_ids == self.image_token_id as ignore_id
target_ids[(input_ids < 0) | (input_ids == self.image_token_id)] = self.ignore_id
input_ids[input_ids < 0] = self.pad_id
if inference_mode:
# 去掉结尾的eos token
assert input_ids[-1] == self.eos_id
input_ids = input_ids[:-1]
target_ids = target_ids[:-1]
images_seq_mask = images_seq_mask[:-1]
if len(images_list) == 0:
images = torch.zeros((1, 3, self.image_size, self.image_size))
images_spatial_crop = torch.zeros((1, 2), dtype=torch.long)
else:
images = torch.stack(images_list, dim=0)
images_spatial_crop = torch.tensor(images_spatial_crop, dtype=torch.long)
prepare = VLChatProcessorOutput(
sft_format=sft_format,
input_ids=input_ids,
target_ids=target_ids,
images=images,
images_seq_mask=images_seq_mask,
images_spatial_crop=images_spatial_crop,
num_image_tokens=num_image_tokens
)
return prepare
def __call__(
self,
*,
prompt: str = None,
conversations: List[Dict[str, str]] = None,
images: List[Image.Image] = None,
apply_sft_format: bool = False,
force_batchify: bool = True,
inference_mode: bool = True,
system_prompt: str = "",
**kwargs,
):
"""
Args:
prompt (str): the formatted prompt;
conversations (List[Dict]): conversations with a list of messages;
images (List[ImageType]): the list of images;
apply_sft_format (bool): if prompt is not None, then apply the SFT format to prompt;
if conversations is not None, then it will always apply the SFT format to conversations;
force_batchify (bool): force batchify the inputs;
inference_mode (bool): if True, then remove the last eos token;
system_prompt (str): the system prompt;
**kwargs:
Returns:
outputs (BaseProcessorOutput): the output of the processor,
- input_ids (torch.LongTensor): [N + image tokens]
- images (torch.FloatTensor): [n_images, 3, H, W]
- image_id (int): the id of the image token
- num_image_tokens (List[int]): the number of image tokens
"""
prepare = self.process_one(
prompt=prompt,
conversations=conversations,
images=images,
apply_sft_format=apply_sft_format,
inference_mode=inference_mode,
system_prompt=system_prompt
)
if force_batchify:
prepare = self.batchify([prepare])
return prepare
def tokenize_with_images(
self,
conversation: str,
images: List[Image.Image],
bos: bool = True,
eos: bool = True,
cropping: bool = True,
):
"""Tokenize text with <image> tags."""
assert conversation.count(self.image_token) == len(images)
text_splits = conversation.split(self.image_token)
images_list, images_seq_mask, images_spatial_crop = [], [], []
num_image_tokens = []
tokenized_str = []
for text_sep, image in zip(text_splits, images):
"""encode text_sep"""
tokenized_sep = self.encode(text_sep, bos=False, eos=False)
tokenized_str += tokenized_sep
images_seq_mask += [False] * len(tokenized_sep)
"""select best resolution for anyres"""
if cropping:
best_width, best_height = select_best_resolution(image.size, self.candidate_resolutions)
else:
best_width, best_height = self.image_size, self.image_size
# print(image.size, (best_width, best_height)) # check the select_best_resolutions func
"""process the global view"""
global_view = ImageOps.pad(image, (self.image_size, self.image_size),
color=tuple(int(x * 255) for x in self.image_transform.mean))
images_list.append(self.image_transform(global_view))
"""process the local views"""
local_view = ImageOps.pad(image, (best_width, best_height),
color=tuple(int(x * 255) for x in self.image_transform.mean))
for i in range(0, best_height, self.image_size):
for j in range(0, best_width, self.image_size):
images_list.append(
self.image_transform(local_view.crop((j, i, j + self.image_size, i + self.image_size))))
"""record height / width crop num"""
num_width_tiles, num_height_tiles = best_width // self.image_size, best_height // self.image_size
images_spatial_crop.append([num_width_tiles, num_height_tiles])
"""add image tokens"""
h = w = math.ceil((self.image_size // self.patch_size) / self.downsample_ratio)
# global views tokens h * (w + 1), 1 is for line seperator
tokenized_image = [self.image_token_id] * h * (w + 1)
# add a seperator between global and local views
tokenized_image += [self.image_token_id]
# local views tokens, (num_height_tiles * h) * (num_width_tiles * w + 1)
tokenized_image += [self.image_token_id] * (num_height_tiles * h) * (num_width_tiles * w + 1)
tokenized_str += tokenized_image
images_seq_mask += [True] * len(tokenized_image)
num_image_tokens.append(len(tokenized_image))
# print(width_crop_num, height_crop_num, len(tokenized_image)) # test the correctness of the number of image-related tokens
"""process the last text split"""
tokenized_sep = self.encode(text_splits[-1], bos=False, eos=False)
tokenized_str += tokenized_sep
images_seq_mask += [False] * len(tokenized_sep)
"""add the bos and eos tokens"""
if bos:
tokenized_str = [self.bos_id] + tokenized_str
images_seq_mask = [False] + images_seq_mask
if eos:
tokenized_str = tokenized_str + [self.eos_id]
images_seq_mask = images_seq_mask + [False]
assert len(tokenized_str) == len(
images_seq_mask), f"tokenize_with_images func: tokenized_str's length {len(tokenized_str)} is not equal to imags_seq_mask's length {len(images_seq_mask)}"
return tokenized_str, images_list, images_seq_mask, images_spatial_crop, num_image_tokens
def batchify(
self,
sample_list: List[VLChatProcessorOutput],
padding: Literal["left", "right"] = "left"
) -> BatchCollateOutput:
"""
Preprocesses the inputs for multimodal inference.
Args:
sample_list (List[VLChatProcessorOutput]): A list of VLChatProcessorOutput.
padding (str): The padding method. Defaults to "left".
Returns:
BatchCollateOutput: A dictionary of the inputs to use for multimodal inference.
"""
batched_sft_format = [sample.sft_format for sample in sample_list]
batched_input_ids = [sample.input_ids for sample in sample_list]
batched_labels = [sample.target_ids for sample in sample_list]
batched_images_seq_mask = [sample["images_seq_mask"] for sample in sample_list]
seq_lens = [len(sample) for sample in sample_list]
"""padding input_ids and images_seq_mask"""
if padding == "left":
# the tokenizer is default to pad at left
## TODO, You're using a LlamaTokenizerFast tokenizer.
# Please note that with a fast tokenizer, using the `__call__` method is faster than
# using a method to encode the text followed by a call to the `pad` method to get a padded encoding.
padded_input_ids = self.tokenizer.pad({"input_ids": batched_input_ids})
batched_input_ids, batched_attention_mask = padded_input_ids["input_ids"], padded_input_ids[
"attention_mask"].bool()
batched_labels = self.tokenizer.pad({"input_ids": batched_labels})["input_ids"]
batched_labels[batched_labels == self.pad_id] = self.ignore_id # labels正常不会出现pad_id,无需额外保护
batched_images_seq_mask = self.tokenizer.pad({"input_ids": batched_images_seq_mask})["input_ids"]
batched_images_seq_mask[batched_images_seq_mask == self.pad_id] = False
else:
batched_input_ids = pad_sequence(batched_input_ids, batch_first=True, padding_value=self.pad_id)
batched_labels = pad_sequence(batched_labels, batch_first=True, padding_value=self.ignore_id)
batched_images_seq_mask = pad_sequence(batched_images_seq_mask, batch_first=True, padding_value=0)
batched_attention_mask = batched_input_ids != self.pad_id
"""padding images to max_patch_num"""
max_n_patches = max(sample["images"].shape[0] for sample in sample_list)
batched_images = []
for sample in sample_list:
images = sample["images"]
n_pads = max_n_patches - images.shape[0]
if n_pads > 0:
pad_images = torch.zeros((n_pads, *images.shape[1:]), dtype=images.dtype)
images = torch.cat([images, pad_images], dim=0)
batched_images.append(images)
batched_images = torch.stack(batched_images, dim=0)
"""padding images_spatial_crop to max_n_images"""
max_n_images = max(sample["images_spatial_crop"].shape[0] for sample in sample_list)
batched_images_spatial_crop = []
for sample in sample_list:
images_spatial_crop = sample["images_spatial_crop"]
n_pads = max_n_images - sample["images_spatial_crop"].shape[0]
if n_pads > 0:
pad_images_spatial_crop = torch.full((n_pads, 2), 0, dtype=images_spatial_crop.dtype)
images_spatial_crop = torch.cat([images_spatial_crop, pad_images_spatial_crop], dim=0)
batched_images_spatial_crop.append(images_spatial_crop)
batched_images_spatial_crop = torch.stack(batched_images_spatial_crop, dim=0)
batched_samples = BatchCollateOutput(
input_ids=batched_input_ids,
attention_mask=batched_attention_mask,
labels=batched_labels,
images=batched_images,
images_seq_mask=batched_images_seq_mask,
images_spatial_crop=batched_images_spatial_crop,
sft_format=batched_sft_format,
seq_lens=seq_lens
)
return batched_samples
|