oryx1729
Update UI layout
65935d6
raw
history blame
4.31 kB
import glob
import os
import logging
import sys
import streamlit as st
from haystack import Pipeline
from haystack.document_stores import FAISSDocumentStore
from haystack.nodes import Shaper, PromptNode, PromptTemplate, PromptModel, EmbeddingRetriever
from haystack.nodes.retriever.web import WebRetriever
from haystack.schema import Document
logging.basicConfig(
level=logging.DEBUG,
format="%(levelname)s %(asctime)s %(name)s:%(message)s",
handlers=[logging.StreamHandler(sys.stdout)],
force=True,
)
def get_plain_pipeline():
prompt_open_ai = PromptModel(model_name_or_path="text-davinci-003", api_key=st.secrets["OPENAI_API_KEY"])
# Now let make one PromptNode use the default model and the other one the OpenAI model:
plain_llm_template = PromptTemplate(name="plain_llm", prompt_text="Answer the following question: $query")
node_openai = PromptNode(prompt_open_ai, default_prompt_template=plain_llm_template, max_length=300)
pipeline = Pipeline()
pipeline.add_node(component=node_openai, name="prompt_node", inputs=["Query"])
return pipeline
def get_ret_aug_pipeline():
ds = FAISSDocumentStore(faiss_index_path="my_faiss_index.faiss",
faiss_config_path="my_faiss_index.json")
retriever = EmbeddingRetriever(
document_store=ds,
embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
model_format="sentence_transformers",
top_k=2
)
shaper = Shaper(func="join_documents", inputs={"documents": "documents"}, outputs=["documents"])
default_template= PromptTemplate(
name="question-answering",
prompt_text="Given the context please answer the question. Context: $documents; Question: "
"$query; Answer:",
)
# Let's initiate the PromptNode
node = PromptNode("text-davinci-003", default_prompt_template=default_template,
api_key=st.secrets["OPENAI_API_KEY"], max_length=500)
# Let's create a pipeline with Shaper and PromptNode
pipe = Pipeline()
pipe.add_node(component=retriever, name='retriever', inputs=['Query'])
pipe.add_node(component=shaper, name="shaper", inputs=["retriever"])
pipe.add_node(component=node, name="prompt_node", inputs=["shaper"])
return pipe
def get_web_ret_pipeline():
search_key = st.secrets["WEBRET_API_KEY"]
web_retriever = WebRetriever(api_key=search_key, search_engine_provider="SerperDev")
shaper = Shaper(func="join_documents", inputs={"documents": "documents"}, outputs=["documents"])
default_template = PromptTemplate(
name="question-answering",
prompt_text="Given the context please answer the question. Context: $documents; Question: "
"$query; Answer:",
)
# Let's initiate the PromptNode
node = PromptNode("text-davinci-003", default_prompt_template=default_template,
api_key=st.secrets["OPENAI_API_KEY"], max_length=500)
# Let's create a pipeline with Shaper and PromptNode
pipe = Pipeline()
pipe.add_node(component=web_retriever, name='retriever', inputs=['Query'])
pipe.add_node(component=shaper, name="shaper", inputs=["retriever"])
pipe.add_node(component=node, name="prompt_node", inputs=["shaper"])
return pipe
def app_init():
os.environ["OPENAI_API_KEY"] = st.secrets["OPENAI_API_KEY"]
p1 = get_plain_pipeline()
p2 = get_ret_aug_pipeline()
p3 = get_web_ret_pipeline()
return p1, p2, p3
def main():
p1, p2, p3 = app_init()
st.title("Haystack Demo")
input = st.text_input("Query ...", "Did SVB collapse?")
query_type = st.radio("Type",
("Retrieval Augmented", "Retrieval Augmented with Web Search"))
# col_1, col_2 = st.columns(2)
if st.button("Random Question"):
new_text = "Streamlit is great!"
input.value = new_text
# with col_1:
# st.text("PLAIN")
answers = p1.run(input)
st.text_area("PLAIN GPT", answers['results'][0])
# with col_2:
# st.write(query_type.upper())
if query_type == "Retrieval Augmented":
answers_2 = p2.run(input)
else:
answers_2 = p3.run(input)
st.text_area(query_type.upper(),answers_2['results'][0])
if __name__ == "__main__":
main()