Spaces:
Runtime error
Runtime error
import glob | |
import os | |
import logging | |
import sys | |
import streamlit as st | |
from haystack import Pipeline | |
from haystack.document_stores import FAISSDocumentStore | |
from haystack.nodes import Shaper, PromptNode, PromptTemplate, PromptModel, EmbeddingRetriever | |
from haystack.nodes.retriever.web import WebRetriever | |
from haystack.schema import Document | |
logging.basicConfig( | |
level=logging.DEBUG, | |
format="%(levelname)s %(asctime)s %(name)s:%(message)s", | |
handlers=[logging.StreamHandler(sys.stdout)], | |
force=True, | |
) | |
def get_plain_pipeline(): | |
prompt_open_ai = PromptModel(model_name_or_path="text-davinci-003", api_key=st.secrets["OPENAI_API_KEY"]) | |
# Now let make one PromptNode use the default model and the other one the OpenAI model: | |
plain_llm_template = PromptTemplate(name="plain_llm", prompt_text="Answer the following question: $query") | |
node_openai = PromptNode(prompt_open_ai, default_prompt_template=plain_llm_template, max_length=300) | |
pipeline = Pipeline() | |
pipeline.add_node(component=node_openai, name="prompt_node", inputs=["Query"]) | |
return pipeline | |
def get_ret_aug_pipeline(): | |
ds = FAISSDocumentStore(faiss_index_path="my_faiss_index.faiss", | |
faiss_config_path="my_faiss_index.json") | |
retriever = EmbeddingRetriever( | |
document_store=ds, | |
embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1", | |
model_format="sentence_transformers", | |
top_k=2 | |
) | |
shaper = Shaper(func="join_documents", inputs={"documents": "documents"}, outputs=["documents"]) | |
default_template= PromptTemplate( | |
name="question-answering", | |
prompt_text="Given the context please answer the question. Context: $documents; Question: " | |
"$query; Answer:", | |
) | |
# Let's initiate the PromptNode | |
node = PromptNode("text-davinci-003", default_prompt_template=default_template, | |
api_key=st.secrets["OPENAI_API_KEY"], max_length=500) | |
# Let's create a pipeline with Shaper and PromptNode | |
pipe = Pipeline() | |
pipe.add_node(component=retriever, name='retriever', inputs=['Query']) | |
pipe.add_node(component=shaper, name="shaper", inputs=["retriever"]) | |
pipe.add_node(component=node, name="prompt_node", inputs=["shaper"]) | |
return pipe | |
def get_web_ret_pipeline(): | |
search_key = st.secrets["WEBRET_API_KEY"] | |
web_retriever = WebRetriever(api_key=search_key, search_engine_provider="SerperDev") | |
shaper = Shaper(func="join_documents", inputs={"documents": "documents"}, outputs=["documents"]) | |
default_template = PromptTemplate( | |
name="question-answering", | |
prompt_text="Given the context please answer the question. Context: $documents; Question: " | |
"$query; Answer:", | |
) | |
# Let's initiate the PromptNode | |
node = PromptNode("text-davinci-003", default_prompt_template=default_template, | |
api_key=st.secrets["OPENAI_API_KEY"], max_length=500) | |
# Let's create a pipeline with Shaper and PromptNode | |
pipe = Pipeline() | |
pipe.add_node(component=web_retriever, name='retriever', inputs=['Query']) | |
pipe.add_node(component=shaper, name="shaper", inputs=["retriever"]) | |
pipe.add_node(component=node, name="prompt_node", inputs=["shaper"]) | |
return pipe | |
def app_init(): | |
os.environ["OPENAI_API_KEY"] = st.secrets["OPENAI_API_KEY"] | |
p1 = get_plain_pipeline() | |
p2 = get_ret_aug_pipeline() | |
p3 = get_web_ret_pipeline() | |
return p1, p2, p3 | |
def main(): | |
p1, p2, p3 = app_init() | |
st.title("Haystack Demo") | |
input = st.text_input("Query ...", "Did SVB collapse?") | |
query_type = st.radio("Type", | |
("Retrieval Augmented", "Retrieval Augmented with Web Search")) | |
# col_1, col_2 = st.columns(2) | |
if st.button("Random Question"): | |
new_text = "Streamlit is great!" | |
input.value = new_text | |
# with col_1: | |
# st.text("PLAIN") | |
answers = p1.run(input) | |
st.text_area("PLAIN GPT", answers['results'][0]) | |
# with col_2: | |
# st.write(query_type.upper()) | |
if query_type == "Retrieval Augmented": | |
answers_2 = p2.run(input) | |
else: | |
answers_2 = p3.run(input) | |
st.text_area(query_type.upper(),answers_2['results'][0]) | |
if __name__ == "__main__": | |
main() | |