Spaces:
Sleeping
Sleeping
File size: 1,568 Bytes
3eeace3 0f9042b 3eeace3 2e1e1c3 3eeace3 0f9042b 3eeace3 2e1e1c3 3eeace3 7ce4bd5 2e1e1c3 3eeace3 c962cf9 7ce4bd5 2f4b113 3eeace3 2f4b113 3eeace3 2f4b113 3eeace3 2f4b113 2e1e1c3 2f4b113 3eeace3 2f4b113 3eeace3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
import easyocr as ocr #OCR
import streamlit as st #Web App
from PIL import Image #Image Processing
import numpy as np #Image Processing
#title
st.title("Easy OCR - Extract Text from Images")
#subtitle
st.markdown("## Optical Character Recognition - Using `easyocr`, `streamlit` - hosted on 🤗 Spaces")
st.markdown("Used Github Actions to automatically build the app on any updates on [this github repo link](https://github.com/deepanshu2207/imgtotext)")
#image uploader
image = st.file_uploader(label = "Upload your image here",type=['png','jpg','jpeg'])
print('Before model load func')
@st.cache_resource
def load_model():
reader = ocr.Reader(['en'], detector='dbnet18', gpu=False, verbose=True, model_storage_directory='.')
return reader
reader = load_model() #load model
print('After model load func')
if image is not None:
print('1. Image Added')
input_image = Image.open(image) #read image
print('2. Image Opened')
st.image(input_image) #display image
print('3. Image Showed')
with st.spinner("🤖 AI is at Work! "):
print(np.array(input_image))
result = reader.readtext(np.array(input_image), batch_size=5)
print('4. Image Text Read')
result_text = [] #empty list for results
print(result)
for text in result:
result_text.append(text[1])
st.write(result_text)
#st.success("Here you go!")
st.balloons()
else:
st.write("Upload an Image")
st.caption("Made with ❤️ by @deepanshu2207. Credits to 🤗 Spaces for Hosting this ") |