deepsh2207 commited on
Commit
f3a61ac
·
1 Parent(s): 98f3ae6

Revert "Updated UDOP code"

Browse files

This reverts commit 6dd82f593228df1734a5007b0fd4872976053ab7.

Files changed (4) hide show
  1. .gitignore +1 -2
  2. app.py +18 -14
  3. packages.txt +0 -1
  4. requirements.txt +1 -3
.gitignore CHANGED
@@ -2,5 +2,4 @@ venv
2
  venv/
3
  *.ipynb
4
  flagged
5
- *.jpg
6
- VilT
 
2
  venv/
3
  *.ipynb
4
  flagged
5
+ *.jpg
 
app.py CHANGED
@@ -1,29 +1,33 @@
1
  import gradio as gr
2
- from transformers import UdopProcessor, UdopForConditionalGeneration
3
  import torch
4
 
5
  torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg')
6
 
7
- repo_id = "microsoft/udop-large"
8
- processor = UdopProcessor.from_pretrained(repo_id)
9
- model = UdopForConditionalGeneration.from_pretrained(repo_id)
10
 
11
-
12
- def answer_question(img, user_query):
13
- encoding = processor(images=img, text=user_query, return_tensors="pt")
14
- outputs = model.generate(**encoding, max_new_tokens=20)
15
- generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0]
 
 
 
 
 
16
 
17
- return generated_text
18
 
19
  image = gr.Image(type="pil")
20
  question = gr.Textbox(label="Question")
21
  answer = gr.Textbox(label="Predicted answer")
22
  examples = [["cats.jpg", "How many cats are there?"]]
23
 
24
- title = "Interactive demo: UDOP"
25
- description = "Gradio Demo for UDOP, a model that can answer questions from images/pdfs. To use it, simply upload your image or pdf and type a question and click 'submit', or click one of the examples to load them. Read more at the links below."
26
- tochange_article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2212.02623' target='_blank'>Unifying Vision, Text, and Layout for Universal Document Processing</a> | <a href='https://github.com/microsoft/UDOP' target='_blank'>Github Repo</a></p>"
27
 
28
  interface = gr.Interface(fn=answer_question,
29
  inputs=[image, question],
@@ -31,5 +35,5 @@ interface = gr.Interface(fn=answer_question,
31
  examples=examples,
32
  title=title,
33
  description=description,
34
- article=tochange_article)
35
  interface.launch(debug=True)
 
1
  import gradio as gr
2
+ from transformers import ViltProcessor, ViltForQuestionAnswering
3
  import torch
4
 
5
  torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg')
6
 
7
+ processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
8
+ model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
 
9
 
10
+ def answer_question(image, text):
11
+ encoding = processor(image, text, return_tensors="pt")
12
+
13
+ # forward pass
14
+ with torch.no_grad():
15
+ outputs = model(**encoding)
16
+
17
+ logits = outputs.logits
18
+ idx = logits.argmax(-1).item()
19
+ predicted_answer = model.config.id2label[idx]
20
 
21
+ return predicted_answer
22
 
23
  image = gr.Image(type="pil")
24
  question = gr.Textbox(label="Question")
25
  answer = gr.Textbox(label="Predicted answer")
26
  examples = [["cats.jpg", "How many cats are there?"]]
27
 
28
+ title = "Interactive demo: ViLT"
29
+ description = "Gradio Demo for ViLT (Vision and Language Transformer), fine-tuned on VQAv2, a model that can answer questions from images. To use it, simply upload your image and type a question and click 'submit', or click one of the examples to load them. Read more at the links below."
30
+ article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2102.03334' target='_blank'>ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision</a> | <a href='https://github.com/dandelin/ViLT' target='_blank'>Github Repo</a></p>"
31
 
32
  interface = gr.Interface(fn=answer_question,
33
  inputs=[image, question],
 
35
  examples=examples,
36
  title=title,
37
  description=description,
38
+ article=article)
39
  interface.launch(debug=True)
packages.txt DELETED
@@ -1 +0,0 @@
1
- tesseract-ocr
 
 
requirements.txt CHANGED
@@ -1,5 +1,3 @@
1
  gradio
2
  torch
3
- git+https://github.com/huggingface/transformers.git
4
- sentencepiece
5
- pytesseract
 
1
  gradio
2
  torch
3
+ git+https://github.com/huggingface/transformers.git