Spaces:
Running
Running
import numpy as np | |
import torch | |
from doctr.models import ocr_predictor | |
from doctr.models.predictor import OCRPredictor | |
DET_ARCHS = [ | |
"db_resnet50", | |
"db_resnet34", | |
"db_mobilenet_v3_large", | |
"linknet_resnet18", | |
"linknet_resnet34", | |
"linknet_resnet50", | |
] | |
RECO_ARCHS = [ | |
"crnn_vgg16_bn", | |
"crnn_mobilenet_v3_small", | |
"crnn_mobilenet_v3_large", | |
"master", | |
"sar_resnet31", | |
"vitstr_small", | |
"vitstr_base", | |
"parseq", | |
] | |
def load_predictor( | |
det_arch: str, | |
reco_arch: str, | |
assume_straight_pages: bool, | |
straighten_pages: bool, | |
bin_thresh: float, | |
device: torch.device, | |
) -> OCRPredictor: | |
"""Load a predictor from doctr.models | |
Args: | |
---- | |
det_arch: detection architecture | |
reco_arch: recognition architecture | |
assume_straight_pages: whether to assume straight pages or not | |
straighten_pages: whether to straighten rotated pages or not | |
bin_thresh: binarization threshold for the segmentation map | |
device: torch.device, the device to load the predictor on | |
Returns: | |
------- | |
instance of OCRPredictor | |
""" | |
predictor = ocr_predictor( | |
det_arch, | |
reco_arch, | |
pretrained=True, | |
assume_straight_pages=assume_straight_pages, | |
straighten_pages=straighten_pages, | |
export_as_straight_boxes=straighten_pages, | |
detect_orientation=not assume_straight_pages, | |
).to(device) | |
predictor.det_predictor.model.postprocessor.bin_thresh = bin_thresh | |
return predictor | |
# def forward_image(predictor: OCRPredictor, image: np.ndarray, device: torch.device) -> np.ndarray: | |
# """Forward an image through the predictor | |
# Args: | |
# ---- | |
# predictor: instance of OCRPredictor | |
# image: image to process | |
# device: torch.device, the device to process the image on | |
# Returns: | |
# ------- | |
# segmentation map | |
# """ | |
# with torch.no_grad(): | |
# processed_batches = predictor.det_predictor.pre_processor([image]) | |
# out = predictor.det_predictor.model(processed_batches[0].to(device), return_model_output=True) | |
# seg_map = out["out_map"].to("cpu").numpy() | |
# return seg_map | |