# import cv2 # import matplotlib.pyplot as plt import numpy as np import streamlit as st import torch import json from doctr.io import DocumentFile from doctr.utils.visualization import visualize_page from backend.pytorch import DET_ARCHS, RECO_ARCHS, load_predictor #forward_image forward_device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def main(det_archs, reco_archs): """Build a streamlit layout""" # Wide mode st.set_page_config(layout="wide") # Designing the interface st.title("Document Text Extraction") # For newline st.write("\n") # Instructions st.markdown("*Hint: click on the top-right corner of an image to enlarge it!*") # Set the columns # cols = st.columns((1, 1, 1, 1)) cols = st.columns((1, 1, 1)) cols[0].subheader("Input page") # cols[1].subheader("Segmentation heatmap") cols[1].subheader("OCR output") cols[2].subheader("Page reconstitution") # Sidebar # File selection st.sidebar.title("Document selection") # Choose your own image uploaded_file = st.sidebar.file_uploader("Upload files", type=["pdf", "png", "jpeg", "jpg"]) if uploaded_file is not None: if uploaded_file.name.endswith(".pdf"): doc = DocumentFile.from_pdf(uploaded_file.read()) else: doc = DocumentFile.from_images(uploaded_file.read()) page_idx = st.sidebar.selectbox("Page selection", [idx + 1 for idx in range(len(doc))]) - 1 page = doc[page_idx] cols[0].image(page) # Model selection st.sidebar.title("Model selection") det_arch = st.sidebar.selectbox("Text detection model", det_archs) reco_arch = st.sidebar.selectbox("Text recognition model", reco_archs) # # For newline # st.sidebar.write("\n") # # Only straight pages or possible rotation # st.sidebar.title("Parameters") # assume_straight_pages = st.sidebar.checkbox("Assume straight pages", value=True) # st.sidebar.write("\n") # # Straighten pages # straighten_pages = st.sidebar.checkbox("Straighten pages", value=False) # st.sidebar.write("\n") # # Binarization threshold # bin_thresh = st.sidebar.slider("Binarization threshold", min_value=0.1, max_value=0.9, value=0.3, step=0.1) # st.sidebar.write("\n") if st.sidebar.button("Analyze page"): if uploaded_file is None: st.sidebar.write("Please upload a document") else: with st.spinner("Loading model..."): # Default Values assume_straight_pages, straighten_pages, bin_thresh = True, False, 0.3 predictor = load_predictor( det_arch, reco_arch, assume_straight_pages, straighten_pages, bin_thresh, forward_device ) with st.spinner("Analyzing..."): # # Forward the image to the model # seg_map = forward_image(predictor, page, forward_device) # seg_map = np.squeeze(seg_map) # seg_map = cv2.resize(seg_map, (page.shape[1], page.shape[0]), interpolation=cv2.INTER_LINEAR) # # Plot the raw heatmap # fig, ax = plt.subplots() # ax.imshow(seg_map) # ax.axis("off") # cols[1].pyplot(fig) # Plot OCR output out = predictor([page]) fig = visualize_page(out.pages[0].export(), out.pages[0].page, interactive=False, add_labels=False) cols[1].pyplot(fig) # Page reconsitution under input page page_export = out.pages[0].export() if assume_straight_pages or (not assume_straight_pages and straighten_pages): img = out.pages[0].synthesize() cols[2].image(img, clamp=True) print('out',out) print('\n') print('page_export',page_export) print('\n') all_text = '' for i in page_export['blocks']: for line in i['lines']: for word in line['words']: all_text+=word['value'] all_text+=' ' all_text+='\n' print('all_text', all_text) print('\n') # Display Text st.markdown("\n## **Here is your text:**") st.write(all_text) # Display JSON json_string = json.dumps(page_export) st.markdown("\n## **Here are your analysis results in JSON format:**") st.download_button(label="Download JSON", data=json_string, file_name='data.json', mime='application/json') st.json(page_export, expanded=False) if __name__ == "__main__": main(DET_ARCHS, RECO_ARCHS)