Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import datetime
|
2 |
+
import tensorflow as tf
|
3 |
+
from tensorflow.keras.models import load_model
|
4 |
+
import numpy as np
|
5 |
+
import librosa
|
6 |
+
|
7 |
+
# Load pre-trained models
|
8 |
+
speech_to_text_model = load_model('speech_to_text_model.h5')
|
9 |
+
translation_model = load_model('translation_model.h5')
|
10 |
+
|
11 |
+
def preprocess_audio(file_path):
|
12 |
+
# Load and preprocess the audio file
|
13 |
+
audio, sr = librosa.load(file_path, sr=16000)
|
14 |
+
mfccs = librosa.feature.mfcc(y=audio, sr=sr, n_mfcc=13)
|
15 |
+
return np.expand_dims(mfccs, axis=0)
|
16 |
+
|
17 |
+
def translate_speech_to_text(audio_file):
|
18 |
+
# Preprocess the audio file
|
19 |
+
audio_features = preprocess_audio(audio_file)
|
20 |
+
|
21 |
+
# Predict text from audio
|
22 |
+
predicted_text = speech_to_text_model.predict(audio_features)
|
23 |
+
|
24 |
+
# Translate text
|
25 |
+
translated_text = translation_model.predict([predicted_text])
|
26 |
+
|
27 |
+
return translated_text
|
28 |
+
|
29 |
+
def is_after_six_pm():
|
30 |
+
current_time = datetime.now()
|
31 |
+
return current_time.hour >= 18
|
32 |
+
|
33 |
+
def main(audio_file):
|
34 |
+
if is_after_six_pm():
|
35 |
+
translated_text = translate_speech_to_text(audio_file)
|
36 |
+
print("Translated Text:", translated_text)
|
37 |
+
else:
|
38 |
+
print("Service available only after 6 PM IST.")
|
39 |
+
|
40 |
+
# Example usage
|
41 |
+
audio_file_path = 'path/to/your/audiofile.wav'
|
42 |
+
main(audio_file_path)
|