from datetime import datetime import tensorflow as tf from tensorflow.keras.models import load_model import numpy as np import librosa # Load pre-trained models speech_to_text_model = load_model('speech_to_text_model.h5') translation_model = load_model('translation_model.h5') def preprocess_audio(file_path): # Load and preprocess the audio file audio, sr = librosa.load(file_path, sr=16000) mfccs = librosa.feature.mfcc(y=audio, sr=sr, n_mfcc=13) return np.expand_dims(mfccs, axis=0) def translate_speech_to_text(audio_file): # Preprocess the audio file audio_features = preprocess_audio(audio_file) # Predict text from audio predicted_text = speech_to_text_model.predict(audio_features) # Translate text translated_text = translation_model.predict([predicted_text]) return translated_text def is_after_six_pm(): current_time = datetime.now() return current_time.hour >= 18 def main(audio_file): if is_after_six_pm(): translated_text = translate_speech_to_text(audio_file) print("Translated Text:", translated_text) else: print("Service available only after 6 PM IST.") # Example usage audio_file_path = 'path/to/your/audiofile.wav' main(audio_file_path)