File size: 2,846 Bytes
c46b6cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# You can find this code for Chainlit python streaming here (https://docs.chainlit.io/concepts/streaming/python)

# OpenAI Chat completion
import os
from openai import AsyncOpenAI  # importing openai for API usage
import chainlit as cl  # importing chainlit for our app
from chainlit.prompt import Prompt, PromptMessage  # importing prompt tools
#from chainlit.playground.providers import ChatOpenAI   # importing ChatOpenAI tools
from aimakerspace.openai_utils.chatmodel import ChatOpenAI
from dotenv import load_dotenv
from chainlit.types import AskFileResponse

from aimakerspace.text_utils import TextFileLoader, CharacterTextSplitter
from aimakerspace.vectordatabase import VectorDatabase
import asyncio
from aimakerspace.rag_utils.raqa import RetrievalAugmentedQAPipeline

load_dotenv()




# ChatOpenAI Templates
system_template = """You are a helpful assistant who always speaks in a pleasant tone!
"""

user_template = """{input}
Think through your response step by step.
"""

def transform_file(file: AskFileResponse):

    import tempfile

    with tempfile.NamedTemporaryFile(mode="w", delete=False) as tempfile:
        with open(tempfile.name, "wb") as f:
            f.write(file.content)
            # load the file

    print(tempfile.name)
    text_loader_pdf = TextFileLoader(tempfile.name)
    documents = text_loader_pdf.load_documents()

    text_splitter = CharacterTextSplitter()
    split_documents = text_splitter.split_texts(documents)

    return split_documents


@cl.on_chat_start  # marks a function that will be executed at the start of a user session
async def start_chat():
    files = None

    while files == None:
        files = await cl.AskFileMessage(
            content="Please upload a PDF file to begin!",
            accept=["application/pdf"],
            max_size_mb=20,
            timeout=180,
        ).send()

    file = files[0]

    msg = cl.Message(
        content=f"Processing `{file.name}`...", disable_human_feedback=True
    )
    await msg.send()

    # load the file
    documents = transform_file(file)

    vector_uefa_db = VectorDatabase()
    vector_uefa_db = asyncio.run(vector_uefa_db.abuild_from_list(documents))

    retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(
    vector_db_retriever=vector_uefa_db,
    llm=ChatOpenAI()
    )


    # Let the user know that the system is ready
    msg.content = f"Processing `{file.name}` done. You can now ask questions!"
    await msg.update()


    cl.user_session.set("chain", retrieval_augmented_qa_pipeline)





@cl.on_message  # marks a function that should be run each time the chatbot receives a message from a user
async def main(message: cl.Message):
    chain = cl.user_session.get("chain")

    resp = chain.run_pipeline(message.content)

    msg = cl.Message(content=resp["response"])

    await msg.send()