|
from aimakerspace.text_utils import TextFileLoader, CharacterTextSplitter |
|
from aimakerspace.vectordatabase import VectorDatabase |
|
import asyncio |
|
|
|
from aimakerspace.openai_utils.prompts import ( |
|
UserRolePrompt, |
|
SystemRolePrompt, |
|
AssistantRolePrompt, |
|
) |
|
|
|
from aimakerspace.openai_utils.chatmodel import ChatOpenAI |
|
|
|
RAG_PROMPT_TEMPLATE = """ \ |
|
Use the provided context to answer the user's query. |
|
|
|
You may not answer the user's query unless there is specific context in the following text. |
|
|
|
If you do not know the answer, or cannot answer, please respond with "I don't know". |
|
""" |
|
|
|
rag_prompt = SystemRolePrompt(RAG_PROMPT_TEMPLATE) |
|
|
|
USER_PROMPT_TEMPLATE = """ \ |
|
Context: |
|
{context} |
|
|
|
User Query: |
|
{user_query} |
|
""" |
|
|
|
|
|
user_prompt = UserRolePrompt(USER_PROMPT_TEMPLATE) |
|
|
|
class RetrievalAugmentedQAPipeline: |
|
def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase) -> None: |
|
self.llm = llm |
|
self.vector_db_retriever = vector_db_retriever |
|
|
|
def run_pipeline(self, user_query: str) -> str: |
|
context_list = self.vector_db_retriever.search_by_text(user_query, k=4) |
|
|
|
context_prompt = "" |
|
for context in context_list: |
|
context_prompt += context[0] + "\n" |
|
|
|
formatted_system_prompt = rag_prompt.create_message() |
|
|
|
formatted_user_prompt = user_prompt.create_message(user_query=user_query, context=context_prompt) |
|
|
|
return {"response" : self.llm.run([formatted_user_prompt, formatted_system_prompt]), "context" : context_list} |