mpav's picture
prvi rag
c46b6cd
from aimakerspace.text_utils import TextFileLoader, CharacterTextSplitter
from aimakerspace.vectordatabase import VectorDatabase
import asyncio
from aimakerspace.openai_utils.prompts import (
UserRolePrompt,
SystemRolePrompt,
AssistantRolePrompt,
)
from aimakerspace.openai_utils.chatmodel import ChatOpenAI
RAG_PROMPT_TEMPLATE = """ \
Use the provided context to answer the user's query.
You may not answer the user's query unless there is specific context in the following text.
If you do not know the answer, or cannot answer, please respond with "I don't know".
"""
rag_prompt = SystemRolePrompt(RAG_PROMPT_TEMPLATE)
USER_PROMPT_TEMPLATE = """ \
Context:
{context}
User Query:
{user_query}
"""
user_prompt = UserRolePrompt(USER_PROMPT_TEMPLATE)
class RetrievalAugmentedQAPipeline:
def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase) -> None:
self.llm = llm
self.vector_db_retriever = vector_db_retriever
def run_pipeline(self, user_query: str) -> str:
context_list = self.vector_db_retriever.search_by_text(user_query, k=4)
context_prompt = ""
for context in context_list:
context_prompt += context[0] + "\n"
formatted_system_prompt = rag_prompt.create_message()
formatted_user_prompt = user_prompt.create_message(user_query=user_query, context=context_prompt)
return {"response" : self.llm.run([formatted_user_prompt, formatted_system_prompt]), "context" : context_list}