Face Detection and Age Regression Demo
Browse files- README.md +5 -5
- app.py +54 -0
- requirements.txt +3 -0
README.md
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
---
|
2 |
-
title: Face Age
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: streamlit
|
7 |
-
sdk_version: 1.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
|
|
1 |
---
|
2 |
+
title: Face Detection and Age Regression
|
3 |
+
emoji: π
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: red
|
6 |
sdk: streamlit
|
7 |
+
sdk_version: 1.28.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
app.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import degirum as dg
|
3 |
+
from PIL import Image
|
4 |
+
import degirum_tools
|
5 |
+
|
6 |
+
# hw_location: Where you want to run inference.
|
7 |
+
# Use "@cloud" to use DeGirum cloud.
|
8 |
+
# Use "@local" to run on local machine.
|
9 |
+
# Use an IP address for AI server inference.
|
10 |
+
hw_location = "@cloud"
|
11 |
+
|
12 |
+
# face_model_zoo_url: URL/path for the face model zoo.
|
13 |
+
# Use cloud_zoo_url for @cloud, @local, and AI server inference options.
|
14 |
+
# Use '' for an AI server serving models from a local folder.
|
15 |
+
# Use a path to a JSON file for a single model zoo in case of @local inference.
|
16 |
+
face_model_zoo_url = "https://cs.degirum.com/degirum/ultralytics_v6"
|
17 |
+
|
18 |
+
# face_model_name: Name of the model for face detection.
|
19 |
+
face_model_name = "yolov8n_relu6_face--640x640_quant_n2x_orca1_1"
|
20 |
+
|
21 |
+
# age_model_zoo_url: URL/path for the age model zoo.
|
22 |
+
age_model_zoo_url = "https://cs.degirum.com/degirum/sandbox"
|
23 |
+
|
24 |
+
# age_model_name: Name of the model for age detection.
|
25 |
+
age_model_name = "yolov8s_regress_age_silu_utkface--256x256_float_openvino_cpu_1"
|
26 |
+
|
27 |
+
# Connect to AI inference engine getting token from env.ini file
|
28 |
+
face_zoo = dg.connect(hw_location, face_model_zoo_url, token=st.secrets["DG_TOKEN"])
|
29 |
+
age_zoo = dg.connect(hw_location, age_model_zoo_url, token=st.secrets["DG_TOKEN"])
|
30 |
+
|
31 |
+
# Load models
|
32 |
+
face_model = face_zoo.load_model(face_model_name,
|
33 |
+
image_backend='pil',
|
34 |
+
overlay_color=(255,0,0),
|
35 |
+
overlay_line_width=2,
|
36 |
+
overlay_font_scale=1.5
|
37 |
+
)
|
38 |
+
age_model= age_zoo.load_model(age_model_name, image_backend='pil')
|
39 |
+
# Create a compound cropping model with 50% crop extent
|
40 |
+
crop_model = degirum_tools.CroppingAndClassifyingCompoundModel(
|
41 |
+
face_model, age_model, 50.0
|
42 |
+
)
|
43 |
+
|
44 |
+
st.title('DeGirum Cloud Platform Demo of Face Detection and Age Regression Models')
|
45 |
+
|
46 |
+
st.text('Upload an image. Then click on the submit button')
|
47 |
+
with st.form("model_form"):
|
48 |
+
uploaded_file=st.file_uploader('input image')
|
49 |
+
submitted = st.form_submit_button("Submit")
|
50 |
+
if submitted:
|
51 |
+
image = Image.open(uploaded_file)
|
52 |
+
image.thumbnail((640,640), Image.Resampling.LANCZOS)
|
53 |
+
inference_results=crop_model(image)
|
54 |
+
st.image(inference_results.image_overlay,caption='Image with Bounding Boxes')
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
degirum
|
2 |
+
degirum_tools
|
3 |
+
altair<5
|