dejanseo commited on
Commit
1e86db5
·
verified ·
1 Parent(s): 063d4b1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +298 -0
app.py CHANGED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import torch
3
+ # Use AutoModel and AutoTokenizer for easier loading from Hub
4
+ from transformers import AutoModelForTokenClassification, AutoTokenizer
5
+ import numpy as np
6
+ import logging
7
+ from dataclasses import dataclass
8
+ from typing import Optional, Dict, List, Tuple
9
+
10
+ # --- HIDE STREAMLIT MENU ---
11
+ st.set_page_config(
12
+ initial_sidebar_state="collapsed"
13
+ )
14
+
15
+ hide_streamlit_style = """
16
+ <style>
17
+ #MainMenu {visibility: hidden;}
18
+ </style>
19
+ """
20
+ st.markdown(hide_streamlit_style, unsafe_allow_html=True)
21
+
22
+ st.logo(
23
+ image="https://dejan.ai/wp-content/uploads/2024/02/dejan-300x103.png",
24
+ link="https://dejan.ai/",
25
+ )
26
+
27
+ # ----------------------------------
28
+ # Logging
29
+ # ----------------------------------
30
+ logging.basicConfig(level=logging.INFO)
31
+ logger = logging.getLogger(__name__)
32
+
33
+ # ----------------------------------
34
+ # Config
35
+ # ----------------------------------
36
+
37
+ @dataclass
38
+ class AppConfig:
39
+ """Configuration for the LinkBERT application"""
40
+ # <<< CHANGE 1: Point to the Hugging Face Hub repository >>>
41
+ model_name: str = "dejanseo/link-prediction"
42
+ max_length: int = 512
43
+ doc_stride: int = 128
44
+ device: str = "cuda" if torch.cuda.is_available() else "cpu"
45
+
46
+ # ----------------------------------
47
+ # Load model/tokenizer from Hugging Face Hub
48
+ # ----------------------------------
49
+
50
+ @st.cache_resource
51
+ def load_model_from_hub():
52
+ """Loads the fine-tuned model and tokenizer from the Hugging Face Hub."""
53
+ config = AppConfig()
54
+
55
+ logger.info(f"Loading model and tokenizer from Hugging Face Hub: {config.model_name}...")
56
+
57
+ # <<< CHANGE 2: Use Auto* classes for direct loading from the Hub >>>
58
+ model = AutoModelForTokenClassification.from_pretrained(config.model_name)
59
+ tokenizer = AutoTokenizer.from_pretrained(config.model_name)
60
+
61
+ model.to(config.device)
62
+ model.eval()
63
+
64
+ logger.info("Model and tokenizer loaded successfully.")
65
+ return model, tokenizer, config.device, config.max_length, config.doc_stride
66
+
67
+ # <<< CHANGE 3: Call the new loading function >>>
68
+ model, tokenizer, device, MAX_LENGTH, DOC_STRIDE = load_model_from_hub()
69
+
70
+
71
+ # ----------------------------------
72
+ # Inference helpers
73
+ # ----------------------------------
74
+
75
+ def windowize_inference(
76
+ plain_text: str, tokenizer: AutoTokenizer, max_length: int, doc_stride: int
77
+ ) -> List[Dict]:
78
+ """Slice long text into overlapping windows for inference."""
79
+ specials = tokenizer.num_special_tokens_to_add(pair=False)
80
+ cap = max_length - specials
81
+ full_encoding = tokenizer(
82
+ plain_text, add_special_tokens=False, return_offsets_mapping=True, truncation=False
83
+ )
84
+ temp_tokenization = tokenizer(plain_text, truncation=False)
85
+ full_word_ids = temp_tokenization.word_ids(batch_index=0)
86
+
87
+ windows_data = []
88
+ step = max(cap - doc_stride, 1)
89
+ start_token_idx = 0
90
+ total_tokens = len(full_encoding["input_ids"])
91
+
92
+ if total_tokens == 0 and len(plain_text) > 0:
93
+ logger.warning("Tokenizer produced 0 tokens for a non-empty string.")
94
+ return []
95
+
96
+ while start_token_idx < total_tokens:
97
+ end_token_idx = min(start_token_idx + cap, total_tokens)
98
+ ids_slice = full_encoding["input_ids"][start_token_idx:end_token_idx]
99
+ offsets_slice = full_encoding["offset_mapping"][start_token_idx:end_token_idx]
100
+
101
+ # Properly slice word_ids based on character spans
102
+ word_ids_slice = []
103
+ current_token = 0
104
+ for i, wid in enumerate(full_word_ids):
105
+ if temp_tokenization.token_to_chars(i) is not None:
106
+ if current_token >= start_token_idx and current_token < end_token_idx:
107
+ word_ids_slice.append(wid)
108
+ current_token += 1
109
+
110
+ input_ids = tokenizer.build_inputs_with_special_tokens(ids_slice)
111
+ attention_mask = [1] * len(input_ids)
112
+ padding_length = max_length - len(input_ids)
113
+ input_ids.extend([tokenizer.pad_token_id] * padding_length)
114
+ attention_mask.extend([0] * padding_length)
115
+
116
+ # Pad offset mapping correctly
117
+ window_offset_mapping = tokenizer.build_inputs_with_special_tokens([]) # Get special tokens offsets
118
+ window_offset_mapping = window_offset_mapping[:-1] + offsets_slice + window_offset_mapping[-1:]
119
+ window_offset_mapping += [(0, 0)] * padding_length
120
+
121
+ window_word_ids = [None] + word_ids_slice + [None] * (padding_length + 1)
122
+
123
+ windows_data.append({
124
+ "input_ids": torch.tensor(input_ids, dtype=torch.long),
125
+ "attention_mask": torch.tensor(attention_mask, dtype=torch.long),
126
+ "word_ids": window_word_ids[:max_length],
127
+ "offset_mapping": window_offset_mapping[:max_length],
128
+ })
129
+ if end_token_idx >= total_tokens: break
130
+ start_token_idx += step
131
+ return windows_data
132
+
133
+ def classify_text(
134
+ text: str, prediction_threshold_percent: float
135
+ ) -> Tuple[str, Optional[str]]:
136
+ """Classify link tokens with windowing. Returns (html, warning)."""
137
+ if not text.strip(): return "", "Input text is empty."
138
+
139
+ windows = windowize_inference(text, tokenizer, MAX_LENGTH, DOC_STRIDE)
140
+ if not windows: return "", "Could not generate any windows for processing."
141
+
142
+ char_link_probabilities = np.zeros(len(text), dtype=np.float32)
143
+
144
+ with torch.no_grad():
145
+ for window in windows:
146
+ inputs = {
147
+ 'input_ids': window['input_ids'].unsqueeze(0).to(device),
148
+ 'attention_mask': window['attention_mask'].unsqueeze(0).to(device)
149
+ }
150
+ # <<< CHANGE 4: The output object from AutoModel has a 'logits' attribute directly >>>
151
+ outputs = model(**inputs)
152
+ probabilities = torch.softmax(outputs.logits, dim=-1).squeeze(0)
153
+ link_probs = probabilities[:, 1].cpu().numpy()
154
+
155
+ for i, (start, end) in enumerate(window['offset_mapping']):
156
+ if window['word_ids'][i] is not None and start < end:
157
+ char_link_probabilities[start:end] = np.maximum(
158
+ char_link_probabilities[start:end], link_probs[i]
159
+ )
160
+
161
+ final_threshold = prediction_threshold_percent / 100.0
162
+
163
+ full_encoding = tokenizer(text, return_offsets_mapping=True, truncation=False)
164
+ word_ids = full_encoding.word_ids(batch_index=0)
165
+ offsets = full_encoding['offset_mapping']
166
+
167
+ word_max_prob_map: Dict[int, float] = {}
168
+ word_char_spans: Dict[int, List[int]] = {}
169
+
170
+ for i, word_id in enumerate(word_ids):
171
+ if word_id is not None:
172
+ start_char, end_char = offsets[i]
173
+ if start_char < end_char:
174
+ current_token_max_prob = np.max(char_link_probabilities[start_char:end_char]) if np.any(char_link_probabilities[start_char:end_char]) else 0.0
175
+
176
+ if word_id not in word_max_prob_map:
177
+ word_max_prob_map[word_id] = current_token_max_prob
178
+ word_char_spans[word_id] = [start_char, end_char]
179
+ else:
180
+ word_max_prob_map[word_id] = max(word_max_prob_map[word_id], current_token_max_prob)
181
+ word_char_spans[word_id][1] = end_char
182
+
183
+ highlight_candidates: Dict[int, float] = {}
184
+ for word_id, max_prob in word_max_prob_map.items():
185
+ if max_prob >= final_threshold:
186
+ highlight_candidates[word_id] = max_prob
187
+
188
+ max_highlight_prob = 0.0
189
+ if highlight_candidates:
190
+ max_highlight_prob = max(highlight_candidates.values())
191
+
192
+ html_parts, current_char = [], 0
193
+ sorted_word_ids = sorted(word_char_spans.keys(), key=lambda k: word_char_spans[k][0])
194
+
195
+ for word_id in sorted_word_ids:
196
+ start_char, end_char = word_char_spans[word_id]
197
+
198
+ if start_char > current_char:
199
+ html_parts.append(text[current_char:start_char])
200
+
201
+ word_text = text[start_char:end_char]
202
+
203
+ if word_id in highlight_candidates:
204
+ word_prob = highlight_candidates[word_id]
205
+ normalized_opacity = 1.0
206
+ if max_highlight_prob > 0:
207
+ normalized_opacity = (word_prob / max_highlight_prob) * 0.9 + 0.1
208
+
209
+ base_bg_color = "#D4EDDA"
210
+ base_text_color = "#155724"
211
+
212
+ html_parts.append(f"<span style='background-color: {base_bg_color}; color: {base_text_color}; "
213
+ f"padding: 0.1em 0.2em; border-radius: 0.2em; opacity: {normalized_opacity:.2f};'>"
214
+ f"{word_text}</span>")
215
+ else:
216
+ html_parts.append(word_text)
217
+ current_char = end_char
218
+
219
+ if current_char < len(text):
220
+ html_parts.append(text[current_char:])
221
+
222
+ return "".join(html_parts), None
223
+
224
+ # ----------------------------------
225
+ # Streamlit UI (No changes needed from here down)
226
+ # ----------------------------------
227
+ st.set_page_config(layout="wide", page_title="LinkBERT by DEJAN AI")
228
+ st.title("LinkBERT")
229
+
230
+ DEFAULT_THRESHOLD = 70.0
231
+ THRESHOLD_STEP = 10.0
232
+ THRESHOLD_BOUNDARY_PERCENT = 10.0
233
+
234
+ if 'current_threshold' not in st.session_state:
235
+ st.session_state.current_threshold = DEFAULT_THRESHOLD
236
+ if 'output_html' not in st.session_state:
237
+ st.session_state.output_html = ""
238
+ if 'user_input' not in st.session_state:
239
+ st.session_state.user_input = "DEJAN AI is the world's leading AI SEO agency. This tool showcases the capability of our latest link prediction model called LinkBERT. This model is trained on the highest quality organic link data and can predict natural link placement in plain text."
240
+
241
+ user_input = st.text_area(
242
+ "Paste your text here:",
243
+ st.session_state.user_input,
244
+ height=200,
245
+ key="text_area"
246
+ )
247
+
248
+ with st.expander('Settings'):
249
+ slider_threshold = st.slider(
250
+ "Link Probability Threshold (%)",
251
+ min_value=0, max_value=100, value=int(st.session_state.current_threshold), step=1,
252
+ help="The minimum probability for a word to be considered a link candidate."
253
+ )
254
+
255
+ def run_classification(new_threshold: float):
256
+ st.session_state.current_threshold = float(new_threshold)
257
+ st.session_state.user_input = user_input
258
+ if not st.session_state.user_input.strip():
259
+ st.warning("Please enter some text to classify.")
260
+ st.session_state.output_html = ""
261
+ else:
262
+ with st.spinner("Processing..."):
263
+ html, warning = classify_text(st.session_state.user_input, st.session_state.current_threshold)
264
+ if warning: st.warning(warning)
265
+ st.session_state.output_html = html
266
+ st.rerun()
267
+
268
+ if st.button("Classify Text", type="primary"):
269
+ run_classification(slider_threshold)
270
+
271
+ if st.session_state.output_html:
272
+ st.markdown("---")
273
+ st.subheader(f"Results (Threshold: {st.session_state.current_threshold:.1f}%)")
274
+ st.markdown(st.session_state.output_html, unsafe_allow_html=True)
275
+
276
+ col1, col2, col3 = st.columns(3)
277
+
278
+ with col1:
279
+ if st.button("Less", icon="➖", use_container_width=True, disabled=not st.session_state.output_html):
280
+ current_thr = st.session_state.current_threshold
281
+ if current_thr >= (100.0 - THRESHOLD_BOUNDARY_PERCENT):
282
+ new_threshold = current_thr + (100.0 - current_thr) / 2.0
283
+ else:
284
+ new_threshold = current_thr + THRESHOLD_STEP
285
+ run_classification(min(100.0, new_threshold))
286
+
287
+ with col2:
288
+ if st.button("Default", icon="🔄", use_container_width=True, disabled=not st.session_state.output_html):
289
+ run_classification(DEFAULT_THRESHOLD)
290
+
291
+ with col3:
292
+ if st.button("More", icon="➕", use_container_width=True, disabled=not st.session_state.output_html):
293
+ current_thr = st.session_state.current_threshold
294
+ if current_thr <= THRESHOLD_BOUNDARY_PERCENT:
295
+ new_threshold = current_thr / 2.0
296
+ else:
297
+ new_threshold = current_thr - THRESHOLD_STEP
298
+ run_classification(max(0.0, new_threshold))