File size: 13,135 Bytes
84116b7 b5b276c 84116b7 a19307d 84116b7 b5b276c 84116b7 a19307d 84116b7 a19307d 84116b7 a19307d 84116b7 a19307d 84116b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import streamlit as st
import pandas as pd
import numpy as np
import tempfile
import os
from dejan.veczip import veczip
import csv
import ast
from huggingface_hub import hf_hub_download, HfApi
from transformers import AutoTokenizer, AutoModel
import torch
# Function definitions (is_numeric, parse_as_array, get_line_pattern, detect_header, looks_like_id_column, detect_columns, load_and_validate_embeddings, save_compressed_embeddings, run_veczip - same as before)
# -----------------
def is_numeric(s):
"""Checks if a given string is numeric."""
try:
float(s)
return True
except:
return False
def parse_as_array(val):
"""Parses a string as an array of numbers."""
if isinstance(val, (int, float)):
return [val]
val_str = str(val).strip()
if val_str.startswith("[") and val_str.endswith("]"):
try:
arr = ast.literal_eval(val_str)
if isinstance(arr, list) and all(is_numeric(str(x)) for x in arr):
return arr
return None
except:
return None
parts = val_str.split(",")
if len(parts) > 1 and all(is_numeric(p.strip()) for p in parts):
return [float(p.strip()) for p in parts]
return None
def get_line_pattern(row):
"""Detects the pattern (text, number, or array) of a row."""
pattern = []
for val in row:
arr = parse_as_array(val)
if arr is not None:
pattern.append('arr')
else:
if is_numeric(val):
pattern.append('num')
else:
pattern.append('text')
return pattern
def detect_header(lines):
"""Detects if a CSV has a header."""
if len(lines) < 2:
return False
first_line_pattern = get_line_pattern(lines[0])
subsequent_patterns = [get_line_pattern(r) for r in lines[1:]]
if len(subsequent_patterns) > 1:
if all(p == subsequent_patterns[0] for p in subsequent_patterns) and first_line_pattern != subsequent_patterns[0]:
return True
else:
if subsequent_patterns and first_line_pattern != subsequent_patterns[0]:
return True
return False
def looks_like_id_column(col_values):
"""Checks if a column looks like an ID column (sequential integers)."""
try:
nums = [int(float(v)) for v in col_values]
return nums == list(range(nums[0], nums[0] + len(nums)))
except:
return False
def detect_columns(file_path):
"""Detects embedding and metadata columns in a CSV file."""
with open(file_path, "r", newline="", encoding="utf-8") as f:
try:
sample = f.read(1024*10) # Read a larger sample for sniffing
dialect = csv.Sniffer().sniff(sample, delimiters=[',','\t',';','|'])
delimiter = dialect.delimiter
except:
delimiter = ','
f.seek(0) # reset file pointer
reader = csv.reader(f, delimiter=delimiter)
first_lines = list(reader)[:10]
if not first_lines:
raise ValueError("No data")
has_header = detect_header(first_lines)
if has_header:
header = first_lines[0]
data = first_lines[1:]
else:
header = []
data = first_lines
if not data:
return has_header, [], [], delimiter
cols = list(zip(*data))
candidate_arrays = []
candidate_numeric = []
id_like_columns = set()
text_like_columns = set()
for ci, col in enumerate(cols):
col = list(col)
parsed_rows = [parse_as_array(val) for val in col]
if all(r is not None for r in parsed_rows):
lengths = {len(r) for r in parsed_rows}
if len(lengths) == 1:
candidate_arrays.append(ci)
continue
else:
text_like_columns.add(ci)
continue
if all(is_numeric(v) for v in col):
if looks_like_id_column(col):
id_like_columns.add(ci)
else:
candidate_numeric.append(ci)
else:
text_like_columns.add(ci)
identified_embedding_columns = set(candidate_arrays)
identified_metadata_columns = set()
if candidate_arrays:
identified_metadata_columns.update(candidate_numeric)
else:
if len(candidate_numeric) > 1:
identified_embedding_columns.update(candidate_numeric)
else:
identified_metadata_columns.update(candidate_numeric)
identified_metadata_columns.update(id_like_columns)
identified_metadata_columns.update(text_like_columns)
if header:
for ci, col_name in enumerate(header):
if col_name.lower() == 'id':
if ci in identified_embedding_columns:
identified_embedding_columns.remove(ci)
identified_metadata_columns.add(ci)
break
emb_cols = [header[i] if header and i < len(header) else i for i in identified_embedding_columns]
meta_cols = [header[i] if header and i < len(header) else i for i in identified_metadata_columns]
return has_header, emb_cols, meta_cols, delimiter
def load_and_validate_embeddings(input_file, target_dims):
"""Loads, validates, and summarizes embedding data from a CSV."""
print(f"Loading data from {input_file}...")
has_header, embedding_columns, metadata_columns, delimiter = detect_columns(input_file)
data = pd.read_csv(input_file, header=0 if has_header else None, delimiter=delimiter)
def is_valid_row(row):
for col in embedding_columns:
if parse_as_array(row[col]) is None:
return False
return True
valid_rows_filter = data.apply(is_valid_row, axis=1)
data = data[valid_rows_filter]
print("\n=== File Summary ===")
print(f"File: {input_file}")
print(f"Rows: {len(data)}")
print(f"Metadata Columns: {metadata_columns}")
print(f"Embedding Columns: {embedding_columns}")
print("====================\n")
return data, embedding_columns, metadata_columns, has_header, list(data.columns)
def save_compressed_embeddings(output_file, metadata, compressed_embeddings, embedding_columns, original_columns, has_header):
"""Saves compressed embeddings to a CSV file."""
print(f"Saving compressed data to {output_file}...")
metadata = metadata.copy()
for i, col in enumerate(embedding_columns):
metadata[col] = [compressed_embeddings[i][j].tolist() for j in range(compressed_embeddings[i].shape[0])]
header_option = True if has_header else False
final_df = metadata.reindex(columns=original_columns) if original_columns else metadata
final_df.to_csv(output_file, index=False, header=header_option)
print(f"Data saved to {output_file}.")
def run_veczip(input_file, target_dims=16):
"""Runs veczip compression on the input data."""
data, embedding_columns, metadata_columns, has_header, original_columns = load_and_validate_embeddings(input_file, target_dims)
all_embeddings = []
for col in embedding_columns:
embeddings = np.array([parse_as_array(x) for x in data[col].values])
all_embeddings.append(embeddings)
combined_embeddings = np.concatenate(all_embeddings, axis=0)
compressor = veczip(target_dims=target_dims)
retained_indices = compressor.compress(combined_embeddings)
compressed_embeddings = []
for embeddings in all_embeddings:
compressed_embeddings.append(embeddings[:, retained_indices])
temp_output = tempfile.NamedTemporaryFile(suffix='.csv', delete=False)
save_compressed_embeddings(temp_output.name, data[metadata_columns], compressed_embeddings, embedding_columns, original_columns, has_header)
return temp_output.name
# -----------------
# Embedding Generation Function
@st.cache_resource
def load_embedding_model(model_name="mixedbread-ai/mxbai-embed-large-v1"):
"""Loads the embedding model and tokenizer."""
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
return tokenizer, model
@st.cache_data
def generate_embeddings(_tokenizer, _model, text_list):
"""Generates embeddings for a list of text entries."""
encoded_input = _tokenizer(
text_list, padding=True, truncation=True, return_tensors="pt"
)
with torch.no_grad():
model_output = _model(**encoded_input)
embeddings = model_output.last_hidden_state.mean(dim=1)
return embeddings.cpu().numpy()
# Streamlit App
def main():
st.title("Veczip Embeddings Tool")
st.markdown(
"""
This tool offers two ways to compress your embeddings:
1. **Compress Your Embeddings:** Upload a CSV file containing pre-existing embeddings and reduce their dimensionality using `dejan.veczip`.
2. **Generate & Compress Embeddings:** Provide a list of text entries, and this tool will generate embeddings using `mxbai-embed-large-v1` and then compress them.
"""
)
st.markdown(
"""
**General Usage Guide**
* Both tools work best with larger datasets (hundreds or thousands of entries).
* For CSV files with embeddings, ensure that numeric embedding columns are parsed as arrays (e.g. '[1,2,3]' or '1,2,3') and metadata columns are parsed as text or numbers.
* Output files are compressed to 16 dimensions.
"""
)
tab1, tab2 = st.tabs(["Compress Your Embeddings", "Generate & Compress Embeddings"])
with tab1:
st.header("Compress Your Embeddings")
st.markdown(
"""
Upload a CSV file containing pre-existing embeddings.
This will reduce the dimensionality of the embeddings to 16 dimensions using `dejan.veczip`.
"""
)
uploaded_file = st.file_uploader(
"Upload CSV file with embeddings", type=["csv"],
help="Ensure the CSV file has columns where embedding arrays are represented as text. Examples: '[1,2,3]' or '1,2,3'",
)
if uploaded_file:
try:
with st.spinner("Analyzing and compressing embeddings..."):
temp_file = tempfile.NamedTemporaryFile(delete=False)
temp_file.write(uploaded_file.read())
temp_file.close()
output_file_path = run_veczip(temp_file.name)
with open(output_file_path, 'rb') as f:
st.download_button(
label="Download Compressed CSV",
data=f,
file_name="compressed_embeddings.csv",
mime="text/csv"
)
os.unlink(temp_file.name)
os.unlink(output_file_path)
st.success("Compression complete! Download your compressed file below.")
except Exception as e:
st.error(f"Error processing file: {e}")
with tab2:
st.header("Generate & Compress Embeddings")
st.markdown(
"""
Provide a list of text entries (one per line), and this tool will:
1. Generate embeddings using `mixedbread-ai/mxbai-embed-large-v1`.
2. Compress those embeddings to 16 dimensions using `dejan.veczip`.
"""
)
text_input = st.text_area(
"Enter text entries (one per line)",
help="Enter each text entry on a new line. This tool works best with a large sample size.",
)
generate_button = st.button("Generate and Compress")
if generate_button and text_input:
text_list = text_input.strip().split("\n")
if len(text_list) == 0:
st.warning("Please enter some text for embedding")
else:
try:
with st.spinner("Generating and compressing embeddings..."):
tokenizer, model = load_embedding_model()
embeddings = generate_embeddings(tokenizer, model, text_list)
compressor = veczip(target_dims=16)
retained_indices = compressor.compress(embeddings)
compressed_embeddings = embeddings[:, retained_indices]
df = pd.DataFrame(
{"text": text_list, "embeddings": compressed_embeddings.tolist()}
)
st.dataframe(df)
csv_file = df.to_csv(index=False).encode()
st.download_button(
label="Download Compressed Embeddings (CSV)",
data=csv_file,
file_name="generated_compressed_embeddings.csv",
mime="text/csv",
)
st.success("Generated and compressed! Download your file below.")
except Exception as e:
st.error(f"Error: {e}")
if __name__ == "__main__":
main() |