File size: 13,135 Bytes
84116b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5b276c
84116b7
a19307d
84116b7
 
 
b5b276c
84116b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a19307d
84116b7
 
 
 
 
 
 
 
 
 
 
 
 
a19307d
84116b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a19307d
 
 
 
84116b7
 
 
 
 
 
 
a19307d
84116b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import streamlit as st
import pandas as pd
import numpy as np
import tempfile
import os
from dejan.veczip import veczip
import csv
import ast
from huggingface_hub import hf_hub_download, HfApi
from transformers import AutoTokenizer, AutoModel
import torch

# Function definitions (is_numeric, parse_as_array, get_line_pattern, detect_header, looks_like_id_column, detect_columns, load_and_validate_embeddings, save_compressed_embeddings, run_veczip - same as before)
# -----------------
def is_numeric(s):
    """Checks if a given string is numeric."""
    try:
        float(s)
        return True
    except:
        return False

def parse_as_array(val):
    """Parses a string as an array of numbers."""
    if isinstance(val, (int, float)):
        return [val]
    val_str = str(val).strip()
    if val_str.startswith("[") and val_str.endswith("]"):
        try:
            arr = ast.literal_eval(val_str)
            if isinstance(arr, list) and all(is_numeric(str(x)) for x in arr):
                return arr
            return None
        except:
            return None
    parts = val_str.split(",")
    if len(parts) > 1 and all(is_numeric(p.strip()) for p in parts):
        return [float(p.strip()) for p in parts]
    return None

def get_line_pattern(row):
    """Detects the pattern (text, number, or array) of a row."""
    pattern = []
    for val in row:
        arr = parse_as_array(val)
        if arr is not None:
            pattern.append('arr')
        else:
            if is_numeric(val):
                pattern.append('num')
            else:
                pattern.append('text')
    return pattern

def detect_header(lines):
    """Detects if a CSV has a header."""
    if len(lines) < 2:
        return False
    first_line_pattern = get_line_pattern(lines[0])
    subsequent_patterns = [get_line_pattern(r) for r in lines[1:]]
    if len(subsequent_patterns) > 1:
        if all(p == subsequent_patterns[0] for p in subsequent_patterns) and first_line_pattern != subsequent_patterns[0]:
            return True
    else:
        if subsequent_patterns and first_line_pattern != subsequent_patterns[0]:
            return True
    return False

def looks_like_id_column(col_values):
    """Checks if a column looks like an ID column (sequential integers)."""
    try:
        nums = [int(float(v)) for v in col_values]
        return nums == list(range(nums[0], nums[0] + len(nums)))
    except:
        return False

def detect_columns(file_path):
    """Detects embedding and metadata columns in a CSV file."""
    with open(file_path, "r", newline="", encoding="utf-8") as f:
        try:
            sample = f.read(1024*10)  # Read a larger sample for sniffing
            dialect = csv.Sniffer().sniff(sample, delimiters=[',','\t',';','|'])
            delimiter = dialect.delimiter
        except:
            delimiter = ','
        f.seek(0) # reset file pointer
        reader = csv.reader(f, delimiter=delimiter)
        first_lines = list(reader)[:10]

    if not first_lines:
        raise ValueError("No data")

    has_header = detect_header(first_lines)
    if has_header:
        header = first_lines[0]
        data = first_lines[1:]
    else:
        header = []
        data = first_lines

    if not data:
        return has_header, [], [], delimiter

    cols = list(zip(*data))

    candidate_arrays = []
    candidate_numeric = []
    id_like_columns = set()
    text_like_columns = set()

    for ci, col in enumerate(cols):
        col = list(col)
        parsed_rows = [parse_as_array(val) for val in col]

        if all(r is not None for r in parsed_rows):
            lengths = {len(r) for r in parsed_rows}
            if len(lengths) == 1:
                candidate_arrays.append(ci)
                continue
            else:
                text_like_columns.add(ci)
                continue

        if all(is_numeric(v) for v in col):
            if looks_like_id_column(col):
                id_like_columns.add(ci)
            else:
                candidate_numeric.append(ci)
        else:
            text_like_columns.add(ci)

    identified_embedding_columns = set(candidate_arrays)
    identified_metadata_columns = set()

    if candidate_arrays:
        identified_metadata_columns.update(candidate_numeric)
    else:
        if len(candidate_numeric) > 1:
            identified_embedding_columns.update(candidate_numeric)
        else:
            identified_metadata_columns.update(candidate_numeric)

    identified_metadata_columns.update(id_like_columns)
    identified_metadata_columns.update(text_like_columns)


    if header:
        for ci, col_name in enumerate(header):
            if col_name.lower() == 'id':
                if ci in identified_embedding_columns:
                    identified_embedding_columns.remove(ci)
                identified_metadata_columns.add(ci)
                break

    emb_cols = [header[i] if header and i < len(header) else i for i in identified_embedding_columns]
    meta_cols = [header[i] if header and i < len(header) else i for i in identified_metadata_columns]


    return has_header, emb_cols, meta_cols, delimiter

def load_and_validate_embeddings(input_file, target_dims):
    """Loads, validates, and summarizes embedding data from a CSV."""
    print(f"Loading data from {input_file}...")
    has_header, embedding_columns, metadata_columns, delimiter = detect_columns(input_file)
    data = pd.read_csv(input_file, header=0 if has_header else None, delimiter=delimiter)


    def is_valid_row(row):
        for col in embedding_columns:
            if parse_as_array(row[col]) is None:
                return False
        return True

    valid_rows_filter = data.apply(is_valid_row, axis=1)
    data = data[valid_rows_filter]

    print("\n=== File Summary ===")
    print(f"File: {input_file}")
    print(f"Rows: {len(data)}")
    print(f"Metadata Columns: {metadata_columns}")
    print(f"Embedding Columns: {embedding_columns}")
    print("====================\n")

    return data, embedding_columns, metadata_columns, has_header, list(data.columns)


def save_compressed_embeddings(output_file, metadata, compressed_embeddings, embedding_columns, original_columns, has_header):
    """Saves compressed embeddings to a CSV file."""
    print(f"Saving compressed data to {output_file}...")
    metadata = metadata.copy()


    for i, col in enumerate(embedding_columns):
        metadata[col] = [compressed_embeddings[i][j].tolist() for j in range(compressed_embeddings[i].shape[0])]

    header_option = True if has_header else False
    final_df = metadata.reindex(columns=original_columns) if original_columns else metadata
    final_df.to_csv(output_file, index=False, header=header_option)
    print(f"Data saved to {output_file}.")

def run_veczip(input_file, target_dims=16):
    """Runs veczip compression on the input data."""
    data, embedding_columns, metadata_columns, has_header, original_columns = load_and_validate_embeddings(input_file, target_dims)

    all_embeddings = []
    for col in embedding_columns:
        embeddings = np.array([parse_as_array(x) for x in data[col].values])
        all_embeddings.append(embeddings)

    combined_embeddings = np.concatenate(all_embeddings, axis=0)
    compressor = veczip(target_dims=target_dims)
    retained_indices = compressor.compress(combined_embeddings)


    compressed_embeddings = []
    for embeddings in all_embeddings:
       compressed_embeddings.append(embeddings[:, retained_indices])

    temp_output = tempfile.NamedTemporaryFile(suffix='.csv', delete=False)
    save_compressed_embeddings(temp_output.name, data[metadata_columns], compressed_embeddings, embedding_columns, original_columns, has_header)
    return temp_output.name
# -----------------

# Embedding Generation Function
@st.cache_resource
def load_embedding_model(model_name="mixedbread-ai/mxbai-embed-large-v1"):
    """Loads the embedding model and tokenizer."""
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModel.from_pretrained(model_name)
    return tokenizer, model

@st.cache_data
def generate_embeddings(_tokenizer, _model, text_list):
    """Generates embeddings for a list of text entries."""
    encoded_input = _tokenizer(
        text_list, padding=True, truncation=True, return_tensors="pt"
    )
    with torch.no_grad():
        model_output = _model(**encoded_input)
        embeddings = model_output.last_hidden_state.mean(dim=1)
    return embeddings.cpu().numpy()


# Streamlit App
def main():
    st.title("Veczip Embeddings Tool")

    st.markdown(
        """
        This tool offers two ways to compress your embeddings:

        1.  **Compress Your Embeddings:** Upload a CSV file containing pre-existing embeddings and reduce their dimensionality using `dejan.veczip`.
        2.  **Generate & Compress Embeddings:** Provide a list of text entries, and this tool will generate embeddings using `mxbai-embed-large-v1` and then compress them.
        """
    )
    st.markdown(
        """
        **General Usage Guide**

        *   Both tools work best with larger datasets (hundreds or thousands of entries).
        *   For CSV files with embeddings, ensure that numeric embedding columns are parsed as arrays (e.g. '[1,2,3]' or '1,2,3') and metadata columns are parsed as text or numbers.
        *   Output files are compressed to 16 dimensions.
        """
    )


    tab1, tab2 = st.tabs(["Compress Your Embeddings", "Generate & Compress Embeddings"])

    with tab1:
        st.header("Compress Your Embeddings")
        st.markdown(
            """
            Upload a CSV file containing pre-existing embeddings.
            This will reduce the dimensionality of the embeddings to 16 dimensions using `dejan.veczip`.
            """
        )
        uploaded_file = st.file_uploader(
            "Upload CSV file with embeddings", type=["csv"],
            help="Ensure the CSV file has columns where embedding arrays are represented as text. Examples: '[1,2,3]' or '1,2,3'",
        )
        if uploaded_file:
            try:
                with st.spinner("Analyzing and compressing embeddings..."):
                    temp_file = tempfile.NamedTemporaryFile(delete=False)
                    temp_file.write(uploaded_file.read())
                    temp_file.close()
                    output_file_path = run_veczip(temp_file.name)
                    with open(output_file_path, 'rb') as f:
                        st.download_button(
                            label="Download Compressed CSV",
                            data=f,
                            file_name="compressed_embeddings.csv",
                            mime="text/csv"
                        )
                    os.unlink(temp_file.name)
                    os.unlink(output_file_path)
                    st.success("Compression complete! Download your compressed file below.")
            except Exception as e:
                st.error(f"Error processing file: {e}")
    with tab2:
        st.header("Generate & Compress Embeddings")
        st.markdown(
            """
            Provide a list of text entries (one per line), and this tool will:
            1.  Generate embeddings using `mixedbread-ai/mxbai-embed-large-v1`.
            2.  Compress those embeddings to 16 dimensions using `dejan.veczip`.
            """
        )
        text_input = st.text_area(
            "Enter text entries (one per line)",
            help="Enter each text entry on a new line. This tool works best with a large sample size.",
        )

        generate_button = st.button("Generate and Compress")


        if generate_button and text_input:
            text_list = text_input.strip().split("\n")
            if len(text_list) == 0:
                st.warning("Please enter some text for embedding")
            else:
                try:
                    with st.spinner("Generating and compressing embeddings..."):
                        tokenizer, model = load_embedding_model()
                        embeddings = generate_embeddings(tokenizer, model, text_list)
                        compressor = veczip(target_dims=16)
                        retained_indices = compressor.compress(embeddings)
                        compressed_embeddings = embeddings[:, retained_indices]
                        df = pd.DataFrame(
                            {"text": text_list, "embeddings": compressed_embeddings.tolist()}
                        )
                        st.dataframe(df)
                        csv_file = df.to_csv(index=False).encode()
                        st.download_button(
                            label="Download Compressed Embeddings (CSV)",
                            data=csv_file,
                            file_name="generated_compressed_embeddings.csv",
                            mime="text/csv",
                        )
                    st.success("Generated and compressed! Download your file below.")

                except Exception as e:
                    st.error(f"Error: {e}")


if __name__ == "__main__":
    main()