Spaces:
Sleeping
Sleeping
Ekins Kuuzie
commited on
initial commit
Browse files
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##importing the libraries
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
from PIL import Image
|
5 |
+
import cv2
|
6 |
+
import tensorflow as tf
|
7 |
+
import os
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
%matplotlib inline
|
10 |
+
from tensorflow.keras.models import load_model
|
11 |
+
import gradio as gr
|
12 |
+
|
13 |
+
|
14 |
+
# Load your trained model
|
15 |
+
model = load_model('tb_pretrained.h5')
|
16 |
+
|
17 |
+
### Preprocess the new image
|
18 |
+
|
19 |
+
def predict_image(test_image):
|
20 |
+
# img = cv2.imread(test_image)
|
21 |
+
img = np.array(test_image)
|
22 |
+
|
23 |
+
image_1 = tf.image.resize(img, (256,256))
|
24 |
+
|
25 |
+
image_processed = np.expand_dims(image_1/256, 0)
|
26 |
+
|
27 |
+
##prediction
|
28 |
+
|
29 |
+
yhat = model.predict(image_processed)
|
30 |
+
|
31 |
+
## setting a threshold
|
32 |
+
if yhat[0][1] > 0.70:
|
33 |
+
return (f'There is {round((yhat[0][1])*100,2)}% chance of the image being normal')
|
34 |
+
elif yhat[0][0] > 0.9:
|
35 |
+
return (f'There is {round((yhat[0][0])*100,2)}% chance of an abnormality either than TB being present')
|
36 |
+
else:
|
37 |
+
return (f'There is a chance of TB being present')
|
38 |
+
|
39 |
+
|
40 |
+
gr.Interface(predict_image, "image", "label").launch(debug=True, share=True)
|