Spaces:
Sleeping
Sleeping
Dhritiman Sagar
commited on
Commit
·
59c4803
1
Parent(s):
c04d432
Update to use finetuned model
Browse files
app.py
CHANGED
@@ -7,6 +7,7 @@ from typing import List
|
|
7 |
from chainlit.types import AskFileResponse
|
8 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
9 |
from langchain_community.document_loaders import PyMuPDFLoader
|
|
|
10 |
from langchain_community.vectorstores import Qdrant
|
11 |
from langchain_openai.llms import OpenAI
|
12 |
from langchain_openai.chat_models import ChatOpenAI
|
@@ -30,8 +31,8 @@ import chainlit as cl
|
|
30 |
from dotenv import load_dotenv; _ = load_dotenv()
|
31 |
|
32 |
RAG_PROMPT = """
|
33 |
-
Please answer the question below using the provided context.
|
34 |
-
using the context, politely state that you can't answer that question.
|
35 |
|
36 |
Question:
|
37 |
{question}
|
@@ -43,9 +44,12 @@ Context:
|
|
43 |
def get_rag_chain():
|
44 |
"""Fetches a simple RAG chain"""
|
45 |
prompt = ChatPromptTemplate.from_template(RAG_PROMPT)
|
46 |
-
embedding =
|
|
|
|
|
|
|
47 |
retriever = QdrantVectorStore.from_existing_collection(
|
48 |
-
collection_name='
|
49 |
embedding=embedding,
|
50 |
url=os.environ.get('QDRANT_DB'),
|
51 |
api_key=os.environ.get('QDRANT_API_KEY')
|
|
|
7 |
from chainlit.types import AskFileResponse
|
8 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
9 |
from langchain_community.document_loaders import PyMuPDFLoader
|
10 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
11 |
from langchain_community.vectorstores import Qdrant
|
12 |
from langchain_openai.llms import OpenAI
|
13 |
from langchain_openai.chat_models import ChatOpenAI
|
|
|
31 |
from dotenv import load_dotenv; _ = load_dotenv()
|
32 |
|
33 |
RAG_PROMPT = """
|
34 |
+
Please answer the question below using the provided context. Be as detailed as you can be based on the contextual information.
|
35 |
+
If the question cannnot be answered using the context, politely state that you can't answer that question.
|
36 |
|
37 |
Question:
|
38 |
{question}
|
|
|
44 |
def get_rag_chain():
|
45 |
"""Fetches a simple RAG chain"""
|
46 |
prompt = ChatPromptTemplate.from_template(RAG_PROMPT)
|
47 |
+
embedding = HuggingFaceEmbeddings(
|
48 |
+
model_name="deman539/nomic-embed-text-v1",
|
49 |
+
model_kwargs={'trust_remote_code': True}
|
50 |
+
)
|
51 |
retriever = QdrantVectorStore.from_existing_collection(
|
52 |
+
collection_name='ai_ethics_nomicv1_finetuned',
|
53 |
embedding=embedding,
|
54 |
url=os.environ.get('QDRANT_DB'),
|
55 |
api_key=os.environ.get('QDRANT_API_KEY')
|