Spaces:
Sleeping
Sleeping
File size: 809 Bytes
e07643f 98fe8e8 7b17bed f7f7365 7b17bed 42aa5ee 7b17bed 538e95e a2978c1 b783d61 a2978c1 538e95e b783d61 7b17bed 9ad5b8c e07643f b881b82 e07643f 6dc8dcd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import gradio as gr
from transformers import pipeline
import torch
device = "cuda:0" if torch.cuda.is_available() else "cpu"
def transcribe(audio):
pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-small",
chunk_length_s=30,
device=device,
)
# ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
# sample = ds[0]["audio"]
# prediction = pipe(sample.copy(), batch_size=8)["text"]
prediction = pipe(audio)["text"]
print(prediction)
return prediction
gradio_app = gr.Interface(
fn=transcribe,
inputs=gr.Audio(type="filepath"),
outputs=gr.Textbox(label="Result"),
title="Transcribed",
)
if __name__ == "__main__":
gradio_app.launch(share=True) |