Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,30 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
|
4 |
-
pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
|
5 |
|
6 |
-
def predict(input_img):
|
7 |
-
predictions = pipeline(input_img)
|
8 |
-
return input_img, {p["label"]: p["score"] for p in predictions}
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
15 |
)
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
if __name__ == "__main__":
|
18 |
gradio_app.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
|
|
|
4 |
|
|
|
|
|
|
|
5 |
|
6 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
7 |
+
|
8 |
+
pipe = pipeline(
|
9 |
+
"automatic-speech-recognition",
|
10 |
+
model="openai/whisper-small",
|
11 |
+
chunk_length_s=30,
|
12 |
+
device=device,
|
13 |
)
|
14 |
|
15 |
+
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
16 |
+
sample = ds[0]["audio"]
|
17 |
+
|
18 |
+
prediction = pipe(sample.copy(), batch_size=8)["text"]
|
19 |
+
" Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel."
|
20 |
+
|
21 |
+
# we can also return timestamps for the predictions
|
22 |
+
prediction = pipe(sample.copy(), batch_size=8, return_timestamps=True)["chunks"]
|
23 |
+
[{'text': ' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.',
|
24 |
+
'timestamp': (0.0, 5.44)}]
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
if __name__ == "__main__":
|
30 |
gradio_app.launch()
|