File size: 2,707 Bytes
a59bc9c 70bcdad c589e1a 18898ac c589e1a 2571345 c589e1a 2571345 c589e1a ffd4434 ee24018 834791f c589e1a 70bcdad 776a762 ee24018 c589e1a 776a762 70bcdad 776a762 70bcdad 776a762 834791f ee24018 776a762 70bcdad 776a762 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
import gradio as gr
from huggingface_hub import InferenceClient
from sentence_transformers import SentenceTransformer
import torch
with open("knowledge.txt", "r", encoding="utf-8") as file:
knowledge = file.read()
print(knowledge)
cleaned_chunks = [chunk.strip() for chunk in knowledge.strip().split("\n") if chunk.strip()]
print(cleaned_chunks)
model = SentenceTransformer('all-MiniLM-L6-v2')
chunk_embeddings = model.encode(cleaned_chunks, convert_to_tensor=True)
print(chunk_embeddings)
cleaned_text = ""
def get_top_chunks(query):
query_embedding = model.encode(query, convert_to_tensor=True)
query_embedding_normalized = query_embedding / query_embedding.norm()
similarities = torch.matmul(chunk_embeddings, query_embedding_normalized)
print(similarities)
top_indices = torch.topk(similarities, k=5).indices.tolist()
print(top_indices)
return [cleaned_chunks[i] for i in top_indices]
top_results = get_top_chunks("What are some good wizard characters?")
print(top_results)
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# def respond(message, history):
# response = ""
# messages = [{"role": "system", "content": "You are a chatbot that helps users create characters for role playing games."}]
# if history:
# messages.extend(history)
# messages.append({"role": "user", "content": message})
# stream = client.chat_completion(
# messages,
# max_tokens=100,
# temperature=1.2,
# stream=True
# )
# for message in stream:
# token = message.choices[0].delta.content
# if token is not None:
# response += token
# yield response
def respond(message, history):
response = ""
# Retrieve top chunks based on the current user message
top_chunks = get_top_chunks(message)
context = "\n".join(top_chunks)
# Add knowledge as part of system instructions
messages = [
{
"role": "system",
"content": (
"You are a chatbot that helps users create characters for role-playing games. "
"Use the following knowledge to inform your answers:\n\n" + context
)
}
]
if history:
messages.extend(history)
messages.append({"role": "user", "content": message})
stream = client.chat_completion(
messages,
max_tokens=100,
temperature=1.2,
stream=True
)
for message in stream:
token = message.choices[0].delta.content
if token is not None:
response += token
yield response
chatbot = gr.ChatInterface(respond, type="messages")
chatbot.launch()
|