Spaces:
Sleeping
Sleeping
File size: 6,022 Bytes
28635a8 7169e54 28635a8 7918fa4 28635a8 a0371ce 28635a8 f0d7b32 28635a8 a0371ce 28635a8 a0371ce 28635a8 a0371ce 28635a8 a0371ce 28635a8 a0371ce 28635a8 a0371ce 28635a8 0f1a940 28635a8 1178e4b 28635a8 a0371ce 28635a8 440bd6b 28635a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import openai
import os
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Initialize paths and model identifiers for easy configuration and maintenance
filename = "output_chess_details.txt" # Path to the file storing chess-specific details
retrieval_model_name = 'output/sentence-transformer-finetuned/'
openai.api_key = os.environ["OPENAI_API_KEY"]
# Attempt to load the necessary models and provide feedback on success or failure
try:
retrieval_model = SentenceTransformer(retrieval_model_name)
print("Models loaded successfully.")
except Exception as e:
print(f"Failed to load models: {e}")
def load_and_preprocess_text(filename):
"""
Load and preprocess text from a file, removing empty lines and stripping whitespace.
"""
try:
with open(filename, 'r', encoding='utf-8') as file:
segments = [line.strip() for line in file if line.strip()]
print("Text loaded and preprocessed successfully.")
return segments
except Exception as e:
print(f"Failed to load or preprocess text: {e}")
return []
segments = load_and_preprocess_text(filename)
def find_relevant_segment(user_query, segments):
"""
Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
This version tries to match country names in the query with those in the segments.
"""
try:
# Lowercase the query for better matching
lower_query = user_query.lower()
# Filter segments to include only those containing country names mentioned in the query
country_segments = [seg for seg in segments if any(country.lower() in seg.lower() for country in ['Guatemala', 'Mexico', 'U.S.', 'United States'])]
# If no specific country segments found, default to general matching
if not country_segments:
country_segments = segments
query_embedding = retrieval_model.encode(lower_query)
segment_embeddings = retrieval_model.encode(country_segments)
similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
best_idx = similarities.argmax()
return country_segments[best_idx]
except Exception as e:
print(f"Error in finding relevant segment: {e}")
return ""
def generate_response(user_query, relevant_segment):
"""
Generate a response emphasizing the bot's capability in providing country-specific visa information.
"""
try:
system_message = "You are a chess chatbot specialized in providing information on chess rules, strategies, and terminology."
user_message = f"Here's the information on visa requirements for your query: {relevant_segment}"
messages = [
{"role": "system", "content": system_message},
{"role": "user", "content": user_message}
]
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo", # Verify model name
messages=messages,
max_tokens=150,
temperature=0.2,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
return response['choices'][0]['message']['content'].strip()
except Exception as e:
print(f"Error in generating response: {e}")
return f"Error in generating response: {e}"
# Define and configure the Gradio application interface to interact with users.
# Define and configure the Gradio application interface to interact with users.
def query_model(question):
"""
Process a question, find relevant information, and generate a response.
"""
if question == "":
return "Welcome to ChessBot! Ask me anything about chess rules, strategies, and terminology."
relevant_segment = find_relevant_segment(question, segments)
if not relevant_segment:
return "Could not find specific information. Please refine your question."
response = generate_response(question, relevant_segment)
return response
# Define the welcome message and specific topics and countries the chatbot can provide information about.
welcome_message = """
# Welcome to ChessBot!
## Your AI-driven assistant for all chess-related queries.
"""
topics = """
### Feel Free to ask me anything from the topics below!
- Chess piece movements
- Special moves
- Game phases
- Common strategies
- Chess terminology
- Famous games
- Chess tactics
"""
# Define and configure the Gradio application interface to interact with users.
def query_model(question):
"""
Process a question, find relevant information, and generate a response.
Args:
question (str): User input question.
Returns:
str: Generated response or a default welcome message if no question is provided.
"""
if question == "":
return welcome_message
relevant_segment = find_relevant_segment(question, segments)
response = generate_response(question, relevant_segment)
return response
# Setup the Gradio Blocks interface with custom layout components
with gr.Blocks() as demo:
gr.Markdown(welcome_message) # Display the formatted welcome message
with gr.Row():
with gr.Column():
gr.Markdown(topics) # Show the topics on the left side
with gr.Row():
img = gr.Image(os.path.join(os.getcwd(), "chess-chatbot-image.jpeg"), width=500) # Include an image for visual appeal
with gr.Row():
with gr.Column():
question = gr.Textbox(label="Your question", placeholder="What do you want to ask about?")
answer = gr.Textbox(label="ChessBot Response", placeholder="ChessBot will respond here...", interactive=False, lines=10)
submit_button = gr.Button("Submit")
submit_button.click(fn=query_model, inputs=question, outputs=answer)
# Launch the Gradio app to allow user interaction
demo.launch(share=True)
|