taratrankennedy commited on
Commit
401487d
·
verified ·
1 Parent(s): 1178e4b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -48
app.py CHANGED
@@ -2,9 +2,8 @@ import gradio as gr
2
  from sentence_transformers import SentenceTransformer, util
3
  import openai
4
  import os
5
- import os
6
- os.environ["TOKENIZERS_PARALLELISM"] = "false"
7
 
 
8
 
9
  # Initialize paths and model identifiers for easy configuration and maintenance
10
  filename = "output_chess_details.txt" # Path to the file storing chess-specific details
@@ -12,7 +11,6 @@ retrieval_model_name = 'output/sentence-transformer-finetuned/'
12
 
13
  openai.api_key = os.environ["OPENAI_API_KEY"]
14
 
15
-
16
  # Attempt to load the necessary models and provide feedback on success or failure
17
  try:
18
  retrieval_model = SentenceTransformer(retrieval_model_name)
@@ -38,41 +36,41 @@ segments = load_and_preprocess_text(filename)
38
  def find_relevant_segment(user_query, segments):
39
  """
40
  Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
41
- This version tries to match country names in the query with those in the segments.
42
  """
43
  try:
44
  # Lowercase the query for better matching
45
  lower_query = user_query.lower()
46
- # Filter segments to include only those containing country names mentioned in the query
47
- country_segments = [seg for seg in segments if any(country.lower() in seg.lower() for country in ['Guatemala', 'Mexico', 'U.S.', 'United States'])]
48
-
49
- # If no specific country segments found, default to general matching
50
- if not country_segments:
51
- country_segments = segments
52
 
 
53
  query_embedding = retrieval_model.encode(lower_query)
54
- segment_embeddings = retrieval_model.encode(country_segments)
 
 
55
  similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
 
 
56
  best_idx = similarities.argmax()
57
- return country_segments[best_idx]
 
 
58
  except Exception as e:
59
  print(f"Error in finding relevant segment: {e}")
60
  return ""
61
 
62
-
63
  def generate_response(user_query, relevant_segment):
64
  """
65
- Generate a response emphasizing the bot's capability in providing country-specific visa information.
66
  """
67
  try:
68
  system_message = "You are a chess chatbot specialized in providing information on chess rules, strategies, and terminology."
69
- user_message = f"Here's the information on visa requirements for your query: {relevant_segment}"
70
  messages = [
71
  {"role": "system", "content": system_message},
72
  {"role": "user", "content": user_message}
73
  ]
74
  response = openai.ChatCompletion.create(
75
- model="gpt-3.5-turbo", # Verify model name
76
  messages=messages,
77
  max_tokens=150,
78
  temperature=0.2,
@@ -85,14 +83,9 @@ def generate_response(user_query, relevant_segment):
85
  print(f"Error in generating response: {e}")
86
  return f"Error in generating response: {e}"
87
 
88
-
89
-
90
-
91
- # Define and configure the Gradio application interface to interact with users.
92
- # Define and configure the Gradio application interface to interact with users.
93
  def query_model(question):
94
  """
95
- Process a question, find relevant information, and generate a response.
96
  """
97
  if question == "":
98
  return "Welcome to ChessBot! Ask me anything about chess rules, strategies, and terminology."
@@ -102,10 +95,7 @@ def query_model(question):
102
  response = generate_response(question, relevant_segment)
103
  return response
104
 
105
-
106
-
107
-
108
- # Define the welcome message and specific topics and countries the chatbot can provide information about.
109
  welcome_message = """
110
  # Welcome to ChessBot!
111
 
@@ -123,27 +113,6 @@ topics = """
123
  - Chess tactics
124
  """
125
 
126
-
127
- # Define and configure the Gradio application interface to interact with users.
128
- def query_model(question):
129
- """
130
- Process a question, find relevant information, and generate a response.
131
-
132
- Args:
133
- question (str): User input question.
134
-
135
- Returns:
136
- str: Generated response or a default welcome message if no question is provided.
137
- """
138
- if question == "":
139
- return welcome_message
140
- relevant_segment = find_relevant_segment(question, segments)
141
- response = generate_response(question, relevant_segment)
142
- return response
143
-
144
-
145
-
146
-
147
  # Setup the Gradio Blocks interface with custom layout components
148
  with gr.Blocks() as demo:
149
  gr.Markdown(welcome_message) # Display the formatted welcome message
@@ -161,4 +130,3 @@ with gr.Blocks() as demo:
161
 
162
  # Launch the Gradio app to allow user interaction
163
  demo.launch(share=True)
164
-
 
2
  from sentence_transformers import SentenceTransformer, util
3
  import openai
4
  import os
 
 
5
 
6
+ os.environ["TOKENIZERS_PARALLELISM"] = "false"
7
 
8
  # Initialize paths and model identifiers for easy configuration and maintenance
9
  filename = "output_chess_details.txt" # Path to the file storing chess-specific details
 
11
 
12
  openai.api_key = os.environ["OPENAI_API_KEY"]
13
 
 
14
  # Attempt to load the necessary models and provide feedback on success or failure
15
  try:
16
  retrieval_model = SentenceTransformer(retrieval_model_name)
 
36
  def find_relevant_segment(user_query, segments):
37
  """
38
  Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
39
+ This version finds the best match based on the content of the query.
40
  """
41
  try:
42
  # Lowercase the query for better matching
43
  lower_query = user_query.lower()
 
 
 
 
 
 
44
 
45
+ # Encode the query and the segments
46
  query_embedding = retrieval_model.encode(lower_query)
47
+ segment_embeddings = retrieval_model.encode(segments)
48
+
49
+ # Compute cosine similarities between the query and the segments
50
  similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
51
+
52
+ # Find the index of the most similar segment
53
  best_idx = similarities.argmax()
54
+
55
+ # Return the most relevant segment
56
+ return segments[best_idx]
57
  except Exception as e:
58
  print(f"Error in finding relevant segment: {e}")
59
  return ""
60
 
 
61
  def generate_response(user_query, relevant_segment):
62
  """
63
+ Generate a response emphasizing the bot's capability in providing chess information.
64
  """
65
  try:
66
  system_message = "You are a chess chatbot specialized in providing information on chess rules, strategies, and terminology."
67
+ user_message = f"Here's the information on chess: {relevant_segment}"
68
  messages = [
69
  {"role": "system", "content": system_message},
70
  {"role": "user", "content": user_message}
71
  ]
72
  response = openai.ChatCompletion.create(
73
+ model="gpt-3.5-turbo",
74
  messages=messages,
75
  max_tokens=150,
76
  temperature=0.2,
 
83
  print(f"Error in generating response: {e}")
84
  return f"Error in generating response: {e}"
85
 
 
 
 
 
 
86
  def query_model(question):
87
  """
88
+ Process a question, find relevant information, and generate a response.
89
  """
90
  if question == "":
91
  return "Welcome to ChessBot! Ask me anything about chess rules, strategies, and terminology."
 
95
  response = generate_response(question, relevant_segment)
96
  return response
97
 
98
+ # Define the welcome message and specific topics the chatbot can provide information about
 
 
 
99
  welcome_message = """
100
  # Welcome to ChessBot!
101
 
 
113
  - Chess tactics
114
  """
115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
  # Setup the Gradio Blocks interface with custom layout components
117
  with gr.Blocks() as demo:
118
  gr.Markdown(welcome_message) # Display the formatted welcome message
 
130
 
131
  # Launch the Gradio app to allow user interaction
132
  demo.launch(share=True)