demoPOC commited on
Commit
bef06a2
·
1 Parent(s): 835a718

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -90
app.py CHANGED
@@ -68,11 +68,6 @@ def getEmbeddingModel(embeddingId):
68
  return OpenAIEmbeddings()
69
 
70
 
71
- def getLLMModel(LLMID):
72
- llm = OpenAI(temperature=0.0)
73
- return llm
74
-
75
-
76
  def clearKBUploadDirectory(uploads_dir):
77
  for filename in os.listdir(uploads_dir):
78
  file_path = os.path.join(uploads_dir, filename)
@@ -86,90 +81,11 @@ def clearKBUploadDirectory(uploads_dir):
86
  print('Failed to delete %s. Reason: %s' % (file_path, e))
87
 
88
 
89
- def loadKB(fileprovided, urlProvided, uploads_dir, request):
90
- documents = []
91
- if fileprovided:
92
- # Delete Files
93
- clearKBUploadDirectory(uploads_dir)
94
- # Read and Embed New Files provided
95
- for file in request.files.getlist('files[]'):
96
- print("File Received>>>" + file.filename)
97
- file.save(os.path.join(uploads_dir, secure_filename(file.filename)))
98
- loader = PyPDFLoader(os.path.join(uploads_dir, secure_filename(file.filename)))
99
- documents.extend(loader.load())
100
- else:
101
- loader = TextLoader('Jio.txt')
102
- documents.extend(loader.load())
103
-
104
- if urlProvided:
105
- weburl = request.form.getlist('weburl')
106
- print(weburl)
107
- urlList = weburl[0].split(';')
108
- print(urlList)
109
- print("Selenium Started", datetime.now().strftime("%H:%M:%S"))
110
- # urlLoader=RecursiveUrlLoader(urlList[0])
111
- urlLoader = SeleniumURLLoader(urlList)
112
- print("Selenium Completed", datetime.now().strftime("%H:%M:%S"))
113
- documents.extend(urlLoader.load())
114
- print("inside selenium loader:")
115
- print(documents)
116
-
117
- return documents
118
-
119
-
120
- def getRAGChain(customerName,customerDistrict, custDetailsPresent,vectordb):
121
- chain = RetrievalQA.from_chain_type(
122
- llm=getLLMModel(0),
123
- chain_type='stuff',
124
- retriever=vectordb.as_retriever(),
125
- verbose=False,
126
- chain_type_kwargs={
127
- "verbose": False,
128
- "prompt": createPrompt(customerName, customerDistrict, custDetailsPresent),
129
- "memory": ConversationBufferWindowMemory(
130
- k=3,
131
- memory_key="history",
132
- input_key="question"),
133
- }
134
- )
135
- return chain
136
-
137
- def createVectorDB(documents):
138
- text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=150)
139
- texts = text_splitter.split_documents(documents)
140
- print("All chunk List START ***********************\n\n")
141
- pretty_print_docs(texts)
142
- print("All chunk List END ***********************\n\n")
143
- embeddings = getEmbeddingModel(0)
144
- vectordb = Chroma.from_documents(texts, embeddings)
145
- return vectordb
146
-
147
- def createPrompt(cName, cCity, custDetailsPresent):
148
- cProfile = "Customer's Name is " + cName + "\nCustomer's lives in or customer's Resident State or Customer's place is " + cCity + "\n"
149
- print(cProfile)
150
-
151
- template1 = """You role is of a Professional Customer Support Executive and your name is Jio AIAssist.
152
- You are talking to the below customer whose information is provided in block delimited by <cp></cp>.
153
- Use the following customer related information (delimited by <cp></cp>) and context (delimited by <ctx></ctx>) to answer the question at the end by thinking step by step alongwith reaonsing steps:
154
- If you don't know the answer, just say that you don't know, don't try to make up an answer.
155
- Use the customer information to replace entities in the question before answering\n
156
- \n"""
157
-
158
- template2 = """
159
- <ctx>
160
- {context}
161
- </ctx>
162
- <hs>
163
- {history}
164
- </hs>
165
- Question: {question}
166
- Answer: """
167
-
168
- prompt_template = template1 + "<cp>\n" + cProfile + "\n</cp>\n" + template2
169
- PROMPT = PromptTemplate(template=prompt_template, input_variables=["history", "context", "question"])
170
- return PROMPT
171
-
172
- vectordb = createVectorDB(loadKB(False, False, uploads_dir, None))
173
 
174
  @app.route('/', methods=['GET'])
175
  def test():
@@ -278,7 +194,7 @@ def file_Upload():
278
  global vectordb
279
  #vectordb = Chroma.from_documents(texts,embeddings)
280
  vectordb=Chroma.from_documents(documents=texts, embedding=embeddings, collection_metadata={"hnsw:space": "cosine"})
281
- return render_template("AISearch.html")
282
 
283
  if __name__ == '__main__':
284
  app.run(host='0.0.0.0', port=int(os.environ.get('PORT', 7860)))
 
68
  return OpenAIEmbeddings()
69
 
70
 
 
 
 
 
 
71
  def clearKBUploadDirectory(uploads_dir):
72
  for filename in os.listdir(uploads_dir):
73
  file_path = os.path.join(uploads_dir, filename)
 
81
  print('Failed to delete %s. Reason: %s' % (file_path, e))
82
 
83
 
84
+
85
+
86
+
87
+
88
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89
 
90
  @app.route('/', methods=['GET'])
91
  def test():
 
194
  global vectordb
195
  #vectordb = Chroma.from_documents(texts,embeddings)
196
  vectordb=Chroma.from_documents(documents=texts, embedding=embeddings, collection_metadata={"hnsw:space": "cosine"})
197
+ return render_template("index.html")
198
 
199
  if __name__ == '__main__':
200
  app.run(host='0.0.0.0', port=int(os.environ.get('PORT', 7860)))