Update app.py
Browse files
app.py
CHANGED
@@ -68,11 +68,6 @@ def getEmbeddingModel(embeddingId):
|
|
68 |
return OpenAIEmbeddings()
|
69 |
|
70 |
|
71 |
-
def getLLMModel(LLMID):
|
72 |
-
llm = OpenAI(temperature=0.0)
|
73 |
-
return llm
|
74 |
-
|
75 |
-
|
76 |
def clearKBUploadDirectory(uploads_dir):
|
77 |
for filename in os.listdir(uploads_dir):
|
78 |
file_path = os.path.join(uploads_dir, filename)
|
@@ -86,90 +81,11 @@ def clearKBUploadDirectory(uploads_dir):
|
|
86 |
print('Failed to delete %s. Reason: %s' % (file_path, e))
|
87 |
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
# Read and Embed New Files provided
|
95 |
-
for file in request.files.getlist('files[]'):
|
96 |
-
print("File Received>>>" + file.filename)
|
97 |
-
file.save(os.path.join(uploads_dir, secure_filename(file.filename)))
|
98 |
-
loader = PyPDFLoader(os.path.join(uploads_dir, secure_filename(file.filename)))
|
99 |
-
documents.extend(loader.load())
|
100 |
-
else:
|
101 |
-
loader = TextLoader('Jio.txt')
|
102 |
-
documents.extend(loader.load())
|
103 |
-
|
104 |
-
if urlProvided:
|
105 |
-
weburl = request.form.getlist('weburl')
|
106 |
-
print(weburl)
|
107 |
-
urlList = weburl[0].split(';')
|
108 |
-
print(urlList)
|
109 |
-
print("Selenium Started", datetime.now().strftime("%H:%M:%S"))
|
110 |
-
# urlLoader=RecursiveUrlLoader(urlList[0])
|
111 |
-
urlLoader = SeleniumURLLoader(urlList)
|
112 |
-
print("Selenium Completed", datetime.now().strftime("%H:%M:%S"))
|
113 |
-
documents.extend(urlLoader.load())
|
114 |
-
print("inside selenium loader:")
|
115 |
-
print(documents)
|
116 |
-
|
117 |
-
return documents
|
118 |
-
|
119 |
-
|
120 |
-
def getRAGChain(customerName,customerDistrict, custDetailsPresent,vectordb):
|
121 |
-
chain = RetrievalQA.from_chain_type(
|
122 |
-
llm=getLLMModel(0),
|
123 |
-
chain_type='stuff',
|
124 |
-
retriever=vectordb.as_retriever(),
|
125 |
-
verbose=False,
|
126 |
-
chain_type_kwargs={
|
127 |
-
"verbose": False,
|
128 |
-
"prompt": createPrompt(customerName, customerDistrict, custDetailsPresent),
|
129 |
-
"memory": ConversationBufferWindowMemory(
|
130 |
-
k=3,
|
131 |
-
memory_key="history",
|
132 |
-
input_key="question"),
|
133 |
-
}
|
134 |
-
)
|
135 |
-
return chain
|
136 |
-
|
137 |
-
def createVectorDB(documents):
|
138 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=150)
|
139 |
-
texts = text_splitter.split_documents(documents)
|
140 |
-
print("All chunk List START ***********************\n\n")
|
141 |
-
pretty_print_docs(texts)
|
142 |
-
print("All chunk List END ***********************\n\n")
|
143 |
-
embeddings = getEmbeddingModel(0)
|
144 |
-
vectordb = Chroma.from_documents(texts, embeddings)
|
145 |
-
return vectordb
|
146 |
-
|
147 |
-
def createPrompt(cName, cCity, custDetailsPresent):
|
148 |
-
cProfile = "Customer's Name is " + cName + "\nCustomer's lives in or customer's Resident State or Customer's place is " + cCity + "\n"
|
149 |
-
print(cProfile)
|
150 |
-
|
151 |
-
template1 = """You role is of a Professional Customer Support Executive and your name is Jio AIAssist.
|
152 |
-
You are talking to the below customer whose information is provided in block delimited by <cp></cp>.
|
153 |
-
Use the following customer related information (delimited by <cp></cp>) and context (delimited by <ctx></ctx>) to answer the question at the end by thinking step by step alongwith reaonsing steps:
|
154 |
-
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
155 |
-
Use the customer information to replace entities in the question before answering\n
|
156 |
-
\n"""
|
157 |
-
|
158 |
-
template2 = """
|
159 |
-
<ctx>
|
160 |
-
{context}
|
161 |
-
</ctx>
|
162 |
-
<hs>
|
163 |
-
{history}
|
164 |
-
</hs>
|
165 |
-
Question: {question}
|
166 |
-
Answer: """
|
167 |
-
|
168 |
-
prompt_template = template1 + "<cp>\n" + cProfile + "\n</cp>\n" + template2
|
169 |
-
PROMPT = PromptTemplate(template=prompt_template, input_variables=["history", "context", "question"])
|
170 |
-
return PROMPT
|
171 |
-
|
172 |
-
vectordb = createVectorDB(loadKB(False, False, uploads_dir, None))
|
173 |
|
174 |
@app.route('/', methods=['GET'])
|
175 |
def test():
|
@@ -278,7 +194,7 @@ def file_Upload():
|
|
278 |
global vectordb
|
279 |
#vectordb = Chroma.from_documents(texts,embeddings)
|
280 |
vectordb=Chroma.from_documents(documents=texts, embedding=embeddings, collection_metadata={"hnsw:space": "cosine"})
|
281 |
-
return render_template("
|
282 |
|
283 |
if __name__ == '__main__':
|
284 |
app.run(host='0.0.0.0', port=int(os.environ.get('PORT', 7860)))
|
|
|
68 |
return OpenAIEmbeddings()
|
69 |
|
70 |
|
|
|
|
|
|
|
|
|
|
|
71 |
def clearKBUploadDirectory(uploads_dir):
|
72 |
for filename in os.listdir(uploads_dir):
|
73 |
file_path = os.path.join(uploads_dir, filename)
|
|
|
81 |
print('Failed to delete %s. Reason: %s' % (file_path, e))
|
82 |
|
83 |
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
@app.route('/', methods=['GET'])
|
91 |
def test():
|
|
|
194 |
global vectordb
|
195 |
#vectordb = Chroma.from_documents(texts,embeddings)
|
196 |
vectordb=Chroma.from_documents(documents=texts, embedding=embeddings, collection_metadata={"hnsw:space": "cosine"})
|
197 |
+
return render_template("index.html")
|
198 |
|
199 |
if __name__ == '__main__':
|
200 |
app.run(host='0.0.0.0', port=int(os.environ.get('PORT', 7860)))
|