Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -35,7 +35,7 @@ from langchain.docstore.document import Document
|
|
35 |
from langchain.vectorstores import Chroma
|
36 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
37 |
|
38 |
-
from langchain.chains import VectorDBQA
|
39 |
|
40 |
from langchain.document_loaders import UnstructuredFileLoader, TextLoader
|
41 |
from langchain import PromptTemplate
|
@@ -212,7 +212,7 @@ def getRAGChain(customerName, customerDistrict, custDetailsPresent, vectordb,llm
|
|
212 |
global memory
|
213 |
#memory = ConversationBufferWindowMemory(k=3, memory_key="history", input_key="question", initial_memory=conversation_history)
|
214 |
#memory = ConversationBufferMemory(k=3, memory_key="history", input_key="query", initial_memory=conversation_history)
|
215 |
-
memory = ConversationBufferMemory(
|
216 |
|
217 |
# chain = RetrievalQA.from_chain_type(
|
218 |
# llm=getLLMModel(llmID),
|
@@ -229,7 +229,20 @@ def getRAGChain(customerName, customerDistrict, custDetailsPresent, vectordb,llm
|
|
229 |
# input_key="question"),
|
230 |
# }
|
231 |
# )
|
232 |
-
chain = RetrievalQA.from_chain_type(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
llm=getLLMModel(llmID),
|
234 |
chain_type='stuff',
|
235 |
retriever=getRetriever(vectordb),
|
|
|
35 |
from langchain.vectorstores import Chroma
|
36 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
37 |
|
38 |
+
from langchain.chains import VectorDBQA, ConversationChain
|
39 |
|
40 |
from langchain.document_loaders import UnstructuredFileLoader, TextLoader
|
41 |
from langchain import PromptTemplate
|
|
|
212 |
global memory
|
213 |
#memory = ConversationBufferWindowMemory(k=3, memory_key="history", input_key="question", initial_memory=conversation_history)
|
214 |
#memory = ConversationBufferMemory(k=3, memory_key="history", input_key="query", initial_memory=conversation_history)
|
215 |
+
memory = ConversationBufferMemory()
|
216 |
|
217 |
# chain = RetrievalQA.from_chain_type(
|
218 |
# llm=getLLMModel(llmID),
|
|
|
229 |
# input_key="question"),
|
230 |
# }
|
231 |
# )
|
232 |
+
# chain = RetrievalQA.from_chain_type(
|
233 |
+
# llm=getLLMModel(llmID),
|
234 |
+
# chain_type='stuff',
|
235 |
+
# retriever=getRetriever(vectordb),
|
236 |
+
# memory=memory,
|
237 |
+
# #retriever=vectordb.as_retriever(),
|
238 |
+
# verbose=True,
|
239 |
+
# chain_type_kwargs={
|
240 |
+
# "verbose": False,
|
241 |
+
# "prompt": createPrompt(customerName, customerDistrict, custDetailsPresent),
|
242 |
+
# "memory": memory
|
243 |
+
# }
|
244 |
+
# )
|
245 |
+
chain = ConversationChain(
|
246 |
llm=getLLMModel(llmID),
|
247 |
chain_type='stuff',
|
248 |
retriever=getRetriever(vectordb),
|