Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -206,8 +206,8 @@ def loadKB(fileprovided, urlProvided, uploads_dir, request):
|
|
206 |
def getRAGChain(customerName, customerDistrict, custDetailsPresent, vectordb,llmID):
|
207 |
|
208 |
# Retrieve conversation history if available
|
209 |
-
memory = ConversationBufferWindowMemory(k=3, memory_key="history", input_key="question")
|
210 |
-
|
211 |
|
212 |
# chain = RetrievalQA.from_chain_type(
|
213 |
# llm=getLLMModel(llmID),
|
@@ -233,7 +233,7 @@ def getRAGChain(customerName, customerDistrict, custDetailsPresent, vectordb,llm
|
|
233 |
chain_type_kwargs={
|
234 |
"verbose": False,
|
235 |
"prompt": createPrompt(customerName, customerDistrict, custDetailsPresent),
|
236 |
-
"memory":
|
237 |
}
|
238 |
)
|
239 |
return chain
|
@@ -362,7 +362,7 @@ def process_json():
|
|
362 |
|
363 |
for index, query in enumerate(requestQuery['message']):
|
364 |
# message = answering(query)
|
365 |
-
|
366 |
relevantDoc = vectordb.similarity_search_with_score(query, distance_metric="cos", k=3)
|
367 |
conversation_history.append(query)
|
368 |
print("Printing Retriever Docs")
|
@@ -383,6 +383,7 @@ def process_json():
|
|
383 |
print("Chain Run Completed >>>>>>>>>>>>>>>>>>", datetime.now().strftime("%H:%M:%S"))
|
384 |
print("query:", query)
|
385 |
print("Response:", message)
|
|
|
386 |
if "I don't know" in message:
|
387 |
message = "Dear Sir/ Ma'am, Could you please ask questions relevant to Jio?"
|
388 |
responseJSON = {"message": message, "id": index}
|
|
|
206 |
def getRAGChain(customerName, customerDistrict, custDetailsPresent, vectordb,llmID):
|
207 |
|
208 |
# Retrieve conversation history if available
|
209 |
+
#memory = ConversationBufferWindowMemory(k=3, memory_key="history", input_key="question")
|
210 |
+
memory = ConversationBufferWindowMemory(k=3, memory_key="history", input_key="question", initial_memory=conversation_history)
|
211 |
|
212 |
# chain = RetrievalQA.from_chain_type(
|
213 |
# llm=getLLMModel(llmID),
|
|
|
233 |
chain_type_kwargs={
|
234 |
"verbose": False,
|
235 |
"prompt": createPrompt(customerName, customerDistrict, custDetailsPresent),
|
236 |
+
"memory": memory
|
237 |
}
|
238 |
)
|
239 |
return chain
|
|
|
362 |
|
363 |
for index, query in enumerate(requestQuery['message']):
|
364 |
# message = answering(query)
|
365 |
+
memory.chat_memory.add_user_message(query)
|
366 |
relevantDoc = vectordb.similarity_search_with_score(query, distance_metric="cos", k=3)
|
367 |
conversation_history.append(query)
|
368 |
print("Printing Retriever Docs")
|
|
|
383 |
print("Chain Run Completed >>>>>>>>>>>>>>>>>>", datetime.now().strftime("%H:%M:%S"))
|
384 |
print("query:", query)
|
385 |
print("Response:", message)
|
386 |
+
memory.chat_memory.add_ai_message(message)
|
387 |
if "I don't know" in message:
|
388 |
message = "Dear Sir/ Ma'am, Could you please ask questions relevant to Jio?"
|
389 |
responseJSON = {"message": message, "id": index}
|