demoPOC commited on
Commit
c73d15a
·
verified ·
1 Parent(s): 6ebc995

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -4
app.py CHANGED
@@ -206,8 +206,8 @@ def loadKB(fileprovided, urlProvided, uploads_dir, request):
206
  def getRAGChain(customerName, customerDistrict, custDetailsPresent, vectordb,llmID):
207
 
208
  # Retrieve conversation history if available
209
- memory = ConversationBufferWindowMemory(k=3, memory_key="history", input_key="question")
210
-
211
 
212
  # chain = RetrievalQA.from_chain_type(
213
  # llm=getLLMModel(llmID),
@@ -233,7 +233,7 @@ def getRAGChain(customerName, customerDistrict, custDetailsPresent, vectordb,llm
233
  chain_type_kwargs={
234
  "verbose": False,
235
  "prompt": createPrompt(customerName, customerDistrict, custDetailsPresent),
236
- "memory": ConversationBufferWindowMemory(k=3, memory_key="history", input_key="question", initial_memory=conversation_history),
237
  }
238
  )
239
  return chain
@@ -362,7 +362,7 @@ def process_json():
362
 
363
  for index, query in enumerate(requestQuery['message']):
364
  # message = answering(query)
365
-
366
  relevantDoc = vectordb.similarity_search_with_score(query, distance_metric="cos", k=3)
367
  conversation_history.append(query)
368
  print("Printing Retriever Docs")
@@ -383,6 +383,7 @@ def process_json():
383
  print("Chain Run Completed >>>>>>>>>>>>>>>>>>", datetime.now().strftime("%H:%M:%S"))
384
  print("query:", query)
385
  print("Response:", message)
 
386
  if "I don't know" in message:
387
  message = "Dear Sir/ Ma'am, Could you please ask questions relevant to Jio?"
388
  responseJSON = {"message": message, "id": index}
 
206
  def getRAGChain(customerName, customerDistrict, custDetailsPresent, vectordb,llmID):
207
 
208
  # Retrieve conversation history if available
209
+ #memory = ConversationBufferWindowMemory(k=3, memory_key="history", input_key="question")
210
+ memory = ConversationBufferWindowMemory(k=3, memory_key="history", input_key="question", initial_memory=conversation_history)
211
 
212
  # chain = RetrievalQA.from_chain_type(
213
  # llm=getLLMModel(llmID),
 
233
  chain_type_kwargs={
234
  "verbose": False,
235
  "prompt": createPrompt(customerName, customerDistrict, custDetailsPresent),
236
+ "memory": memory
237
  }
238
  )
239
  return chain
 
362
 
363
  for index, query in enumerate(requestQuery['message']):
364
  # message = answering(query)
365
+ memory.chat_memory.add_user_message(query)
366
  relevantDoc = vectordb.similarity_search_with_score(query, distance_metric="cos", k=3)
367
  conversation_history.append(query)
368
  print("Printing Retriever Docs")
 
383
  print("Chain Run Completed >>>>>>>>>>>>>>>>>>", datetime.now().strftime("%H:%M:%S"))
384
  print("query:", query)
385
  print("Response:", message)
386
+ memory.chat_memory.add_ai_message(message)
387
  if "I don't know" in message:
388
  message = "Dear Sir/ Ma'am, Could you please ask questions relevant to Jio?"
389
  responseJSON = {"message": message, "id": index}