File size: 5,908 Bytes
a37aa0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import gradio as gr
from TTS.api import TTS
from transformers import T5ForConditionalGeneration, T5Tokenizer, pipeline
import feedparser
import re

language_map = {
    'en': 'English',
    'fr': 'French'
}

# Add default RSS feeds

rss_feed_map = {
    "NY Times": 'https://rss.nytimes.com/services/xml/rss/nyt/HomePage.xml',
    "Fox News": 'https://moxie.foxnews.com/google-publisher/latest.xml',
    "Yahoo! News": 'https://www.yahoo.com/news/rss',
    "France 24": 'https://www.france24.com/fr/rss',
    "France Info": 'https://www.francetvinfo.fr/titres.rss'
}

def get_rss_feeds(default_choices, custom_choices):
  custom_rss_feeds = custom_choices.split("\n")
  if custom_rss_feeds == ['']:
    return list(set([rss_feed_map[key] for key in default_choices]))
  return list(set(custom_rss_feeds + [rss_feed_map[key] for key in default_choices]))

# RSS feeds

def is_url(string):
    url_pattern = re.compile(
        r'^(?:http|ftp)s?://'  # http:// or https://
        r'(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+(?:[A-Z]{2,6}\.?|[A-Z0-9-]{2,}\.?)|'  # domain...
        r'localhost|'  # localhost...
        r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})'  # ...or ip
        r'(?::\d+)?'  # optional port
        r'(?:/?|[/?]\S+)$', re.IGNORECASE)
    return re.match(url_pattern, string) is not None

def fetch_news(rss_feed):
  if not is_url(rss_feed):
    raise ValueError(f"{rss_feed} is not a valid RSS feed.")
  news = []
  feed = feedparser.parse(rss_feed)
  for entry in feed.entries:
    news.append(entry.title)
  return news

def fetch_news_multiple_urls(rss_feeds):
  return [news for rss_feed in rss_feeds for news in fetch_news(rss_feed)]

# Language_id

model_ckpt = "papluca/xlm-roberta-base-language-detection"
pipe = pipeline("text-classification", model=model_ckpt)

def language_id(strings:list[str]):
  return [(string,language_map[pipe(string, top_k=1, truncation=True)[0]['label']]) for string in strings]

# Translation

## Initialize T5 model and tokenizer
model_name = "t5-small"
tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)

def translate(source_text_with_id, target_language):
  # source_text_with_id = ('text','French') for example
  source_language = source_text_with_id[1]
  assert source_language in language_map.values(), f"{source_language} language is not supported."
  assert target_language in language_map.values(), f"{target_language} language is not supported."

  source_text = f"translate {source_language} to {target_language}: " + source_text_with_id[0]

  # Tokenize input text
  input_ids = tokenizer.encode(source_text, return_tensors="pt")

  # Generate translation
  translated_ids = model.generate(input_ids=input_ids, max_length=100, num_beams=4, early_stopping=True)

  # Decode translated text
  return tokenizer.decode(translated_ids[0], skip_special_tokens=True)

def translate_multiple(source_texts_with_id, target_language):
  return [translate(source_text_with_id, target_language) for source_text_with_id in source_texts_with_id]

# Speech generation

tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2")

def read_news(text,input,output,language):
  assert language in language_map.keys(), f"{language} language is not supported."
  print("speech generation starting")
  tts.tts_to_file(text=text,
                file_path=output,
                speaker_wav=input,
                language=language)
  print("speech generation done")
  return output

# Gradio interface

def process(radio_value, textbox_value, audio_value, checkbox_value):
    inputs = {
        "language": radio_value,
        "rss_feed_urls": textbox_value,
        "audio": audio_value,
        "selected_feeds": checkbox_value
    }
    print("Inputs to Gradio Blocks:")
    print(inputs)

    rss_feeds = get_rss_feeds(checkbox_value,textbox_value)
    print("rss_feeds=",rss_feeds)

    news = fetch_news_multiple_urls(rss_feeds)
    print("news=",news[:2])

    news_with_language_id = language_id(news)
    print("news_with_language_id=",news_with_language_id[:2])

    translated_news = translate_multiple(news_with_language_id, radio_value)
    print("translated_news=",translated_news[:2])

    language = next((key for key, val in language_map.items() if val == radio_value), None)
    print("language=",language)

    all_news = ' '.join(translated_news)
    print("all_news=",all_news[:80])

    output_path = "output.wav"

    return read_news(all_news,audio_value,output_path,language)

with gr.Blocks() as demo:
    gr.Markdown("Customize your newsletter and then click **Fetch News** to download the audio output.")
    with gr.Row():
        radio = gr.Radio(
            label='Choose the language of the output',
            info="If the output language doesn't match the language of an RSS feed, an AI model will take care of translation",
            choices=["English", "French"]
        )
    with gr.Row():
        textbox = gr.Textbox(
            placeholder='https://www.francetvinfo.fr/titres.rss',
            label='Add custom RSS feeds to your newsletter',
            info='The provided urls needed to be written each in a separate line'
        )
    with gr.Row():
        audio = gr.Audio(
            label="Upload a sample audio of someone speaking. The voice of the output will match the voice of the input.",
            type='filepath'
        )
    with gr.Row():
        checkboxgroup = gr.CheckboxGroup(
            ["NY Times", "Fox News", "Yahoo! News", "France 24", "France Info"],
            label="RSS feeds",
            info="Default RSS feeds"
        )
    with gr.Row():
        btn = gr.Button(value='Fetch News')
    with gr.Row():
        out = gr.DownloadButton("📂 Click to download file")
    btn.click(
        fn=process,
        inputs=[radio, textbox, audio, checkboxgroup],
        outputs=out
    )


demo.launch(debug=True)