Spaces:
Sleeping
Sleeping
import streamlit as st | |
# To make things easier later, we're also importing numpy and pandas for | |
# working with sample data. | |
import torch | |
from sentence_transformers import SentenceTransformer | |
model = SentenceTransformer('moka-ai/m3e-base') | |
#Our sentences we like to encode | |
sentences = [ | |
'* Moka 此文本嵌入模型由 MokaAI 训练并开源,训练脚本使用 uniem', | |
'* Massive 此文本嵌入模型通过**千万级**的中文句对数据集进行训练', | |
'* Mixed 此文本嵌入模型支持中英双语的同质文本相似度计算,异质文本检索等功能,未来还会支持代码检索,ALL in one' | |
] | |
#Sentences are encoded by calling model.encode() | |
embeddings = model.encode(sentences) | |
#Print the embeddings | |
for sentence, embedding in zip(sentences, embeddings): | |
print("Sentence:", sentence) | |
print("Embedding:", embedding) | |
print("") | |
import faiss | |
d = embeddings.shape[1] # Dimension of the embeddings | |
index = faiss.IndexFlatIP(d) # Index that uses inner product (dot product) similarity | |
# Add the embeddings to the index | |
index.add(embeddings) | |
# Search for similar documents | |
query = "训练脚本." | |
from sklearn.metrics.pairwise import cosine_similarity | |
query_embedding = model.encode([query])[0] | |
# Compute the cosine similarity between the query embedding and the document embeddings | |
similarities = cosine_similarity([query_embedding], embeddings)[0] | |
# Get the index of the most similar document | |
most_similar_index = similarities.argmax() | |
# Print the most similar document | |
st.write(documents[most_similar_index]) | |
st.title('My first app') | |
st.write("Here's our first attempt at using data to create a table:") | |
df = pd.DataFrame({ | |
'first column': [1, 2, 3, 4], | |
'second column': [10, 20, 30, 40] | |
}) | |
st.write(df) | |
if st.checkbox('Show dataframe'): | |
chart_data = pd.DataFrame( | |
np.random.randn(20, 3), | |
columns=['a', 'b', 'c']) | |
chart_data | |
option = st.selectbox( | |
'Which number do you like best?', | |
df['first column']) | |
st.write('You selected: ', option) | |
text1 = st.text('This is some text.') | |
if st.button('Say hello'): | |
st.write('Why hello there') | |
else: | |
st.write('Goodbye') | |
agree = st.checkbox('I agree') | |
if agree: | |
st.write('Great!') | |
age = st.slider('How old are you?', 0, 130, 25) | |
st.write("I'm ", age, 'years old') | |
title = st.text_input('Movie title', 'Life of Brian') | |
st.write('The current movie title is', title) | |
number = st.number_input('Insert a number') | |
st.write('The current number is ', number) | |