Spaces:
Sleeping
Sleeping
import streamlit as st | |
# To make things easier later, we're also importing numpy and pandas for | |
# working with sample data. | |
from sentence_transformers import SentenceTransformer | |
import faiss | |
import numpy as np | |
# Load the moka-ai/m3e-base model | |
model = SentenceTransformer("moka-ai/m3e-base") | |
# Encode the documents into embeddings | |
documents = ["Document 1", "Document 2", "Document 3"] | |
document_embeddings = model.encode(documents) | |
# Store the embeddings to FAISS | |
index = faiss.IndexFlatIP(document_embeddings.shape[1]) | |
index.add(document_embeddings) | |
# Encode the query into an embedding | |
query = "2" | |
query_embedding = model.encode([query])[0] | |
# Search the FAISS index for the most similar document | |
D, I = index.search(np.array([query_embedding]), k=1) | |
# Print the most similar document | |
print(documents[I[0][0]]) | |
#====================================================================== | |
st.title('My first app') | |
st.write("Here's our first attempt at using data to create a table:") | |
df = pd.DataFrame({ | |
'first column': [1, 2, 3, 4], | |
'second column': [10, 20, 30, 40] | |
}) | |
st.write(df) | |
if st.checkbox('Show dataframe'): | |
chart_data = pd.DataFrame( | |
np.random.randn(20, 3), | |
columns=['a', 'b', 'c']) | |
chart_data | |
option = st.selectbox( | |
'Which number do you like best?', | |
df['first column']) | |
st.write('You selected: ', option) | |
text1 = st.text('This is some text.') | |
if st.button('Say hello'): | |
st.write('Why hello there') | |
else: | |
st.write('Goodbye') | |
agree = st.checkbox('I agree') | |
if agree: | |
st.write('Great!') | |
age = st.slider('How old are you?', 0, 130, 25) | |
st.write("I'm ", age, 'years old') | |
title = st.text_input('Movie title', 'Life of Brian') | |
st.write('The current movie title is', title) | |
number = st.number_input('Insert a number') | |
st.write('The current number is ', number) | |