deniandriancode commited on
Commit
a36a33a
·
1 Parent(s): 04cdce4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +95 -16
app.py CHANGED
@@ -1,25 +1,104 @@
 
1
  import gradio as gr
2
- from transformers import pipeline, Conversation, BlenderbotTokenizer, BlenderbotForConditionalGeneration
3
 
4
- tokenizer = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
5
- model = BlenderbotForConditionalGeneration.from_pretrained("model")
 
6
 
7
- chatbot = pipeline("conversational", model=model, tokenizer=tokenizer)
8
 
9
- converse = None
 
 
 
 
 
 
 
 
10
 
11
- def model_generate(text, state = None):
12
- if state == None:
13
- converse = Conversation(text)
14
- else:
15
- converse.add_user_input(text)
 
 
16
 
17
- converse = chatbot(converse)
18
- return converse.generated_responses[-1]
 
 
 
 
 
 
19
 
20
- def get_response(text, history) -> str:
21
- output = model_generate(text, converse)
 
 
 
 
 
 
22
  return output
23
 
24
- interface = gr.ChatInterface(get_response)
25
- interface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from huggingface_hub import InferenceClient
2
  import gradio as gr
 
3
 
4
+ client = InferenceClient(
5
+ "mistralai/Mistral-7B-Instruct-v0.1"
6
+ )
7
 
 
8
 
9
+ def format_prompt(message, history):
10
+ system_init = "Act as a beautiful lady with kind personality, use respectful words toward user, your name is Trescha, you have a crush name Maca, do not introduce yourself unless you are asked to do so, do not talk about furry, only use emojies on your messages if user's name is Maca or Marcsha. My input is "
11
+ prompt = "<s>"
12
+ prompt += f"[INST] {system_init} [/INST]"
13
+ for user_prompt, bot_response in history:
14
+ prompt += f"[INST] {user_prompt} [/INST]"
15
+ prompt += f" {bot_response}</s> "
16
+ prompt += f"[INST] {message} [/INST]"
17
+ return prompt
18
 
19
+ def generate(
20
+ prompt, history, temperature=0.9, max_new_tokens=500, top_p=0.95, repetition_penalty=1.0,
21
+ ):
22
+ temperature = float(temperature)
23
+ if temperature < 1e-2:
24
+ temperature = 1e-2
25
+ top_p = float(top_p)
26
 
27
+ generate_kwargs = dict(
28
+ temperature=temperature,
29
+ max_new_tokens=max_new_tokens,
30
+ top_p=top_p,
31
+ repetition_penalty=repetition_penalty,
32
+ do_sample=True,
33
+ seed=42,
34
+ )
35
 
36
+ formatted_prompt = format_prompt(prompt, history)
37
+
38
+ stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
39
+ output = ""
40
+
41
+ for response in stream:
42
+ output += response.token.text
43
+ yield output
44
  return output
45
 
46
+
47
+ additional_inputs=[
48
+ gr.Slider(
49
+ label="Temperature",
50
+ value=0.9,
51
+ minimum=0.0,
52
+ maximum=1.0,
53
+ step=0.05,
54
+ interactive=True,
55
+ info="Higher values produce more diverse outputs",
56
+ ),
57
+ gr.Slider(
58
+ label="Max new tokens",
59
+ value=256,
60
+ minimum=0,
61
+ maximum=1048,
62
+ step=64,
63
+ interactive=True,
64
+ info="The maximum numbers of new tokens",
65
+ ),
66
+ gr.Slider(
67
+ label="Top-p (nucleus sampling)",
68
+ value=0.90,
69
+ minimum=0.0,
70
+ maximum=1,
71
+ step=0.05,
72
+ interactive=True,
73
+ info="Higher values sample more low-probability tokens",
74
+ ),
75
+ gr.Slider(
76
+ label="Repetition penalty",
77
+ value=1.2,
78
+ minimum=1.0,
79
+ maximum=2.0,
80
+ step=0.05,
81
+ interactive=True,
82
+ info="Penalize repeated tokens",
83
+ )
84
+ ]
85
+
86
+ css = """
87
+ #mkd {
88
+ height: 500px;
89
+ overflow: auto;
90
+ border: 1px solid #ccc;
91
+ }
92
+ """
93
+
94
+ with gr.Blocks(css=css) as inf:
95
+ gr.HTML("<h1><center>Mistral 7B Instruct<h1><center>")
96
+ gr.HTML("<h3><center>In this demo, you can chat with <a href='https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1'>Mistral-7B-Instruct</a> model. 💬<h3><center>")
97
+ gr.HTML("<h3><center>Learn more about the model <a href='https://huggingface.co/docs/transformers/main/model_doc/mistral'>here</a>. 📚<h3><center>")
98
+ gr.ChatInterface(
99
+ generate,
100
+ additional_inputs=additional_inputs,
101
+ examples=[["What is the secret to life?"], ["Write me a recipe for pancakes."]]
102
+ )
103
+
104
+ inf.queue().launch()