import gradio as gr from huggingface_hub import hf_hub_download import subprocess import tempfile import shutil import os import spaces from transformers import T5ForConditionalGeneration, T5Tokenizer import os subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) def install_apex(): # Install Apex in editable mode from the specified GitHub repository cmd = [ 'pip', 'install', '--no-cache-dir', '--no-build-isolation', '--config-settings', 'build-option=--cpp_ext', '--config-settings', 'build-option=--cuda_ext', '-e', 'git+https://github.com/NVIDIA/apex.git' ] subprocess.run(cmd, check=True) try: import apex except ModuleNotFoundError: print("Apex not found, installing...") install_apex() # Try to import Apex again after installation import apex def download_t5_model(model_id, save_directory): # Modelin tokenizer'ını ve modeli indir model = T5ForConditionalGeneration.from_pretrained(model_id) tokenizer = T5Tokenizer.from_pretrained(model_id) # Model ve tokenizer'ı belirtilen dizine kaydet if not os.path.exists(save_directory): os.makedirs(save_directory) model.save_pretrained(save_directory) tokenizer.save_pretrained(save_directory) # Model ID ve kaydedilecek dizin model_id = "DeepFloyd/t5-v1_1-xxl" save_directory = "pretrained_models/t5_ckpts/t5-v1_1-xxl" # Modeli indir download_t5_model(model_id, save_directory) def download_model(repo_id, model_name): model_path = hf_hub_download(repo_id=repo_id, filename=model_name) return model_path import glob @spaces.GPU def run_inference(model_name, prompt_text): repo_id = "hpcai-tech/Open-Sora" # Map model names to their respective configuration files config_mapping = { "OpenSora-v1-16x256x256.pth": "configs/opensora/inference/16x256x256.py", "OpenSora-v1-HQ-16x256x256.pth": "configs/opensora/inference/16x512x512.py", "OpenSora-v1-HQ-16x512x512.pth": "configs/opensora/inference/64x512x512.py" } config_path = config_mapping[model_name] ckpt_path = download_model(repo_id, model_name) # Save prompt_text to a temporary text file prompt_file = tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode='w') prompt_file.write(prompt_text) prompt_file.close() with open(config_path, 'r') as file: config_content = file.read() config_content = config_content.replace('prompt_path = "./assets/texts/t2v_samples.txt"', f'prompt_path = "{prompt_file.name}"') with tempfile.NamedTemporaryFile('w', delete=False, suffix='.py') as temp_file: temp_file.write(config_content) temp_config_path = temp_file.name cmd = [ "torchrun", "--standalone", "--nproc_per_node", "1", "scripts/inference.py", temp_config_path, "--ckpt-path", ckpt_path ] subprocess.run(cmd) save_dir = "./outputs/samples/" # Örneğin, inference.py tarafından kullanılan kayıt dizini list_of_files = glob.glob(f'{save_dir}/*') if list_of_files: latest_file = max(list_of_files, key=os.path.getctime) return latest_file else: print("No files found in the output directory.") return None # Clean up the temporary files os.remove(temp_file.name) os.remove(prompt_file.name) def main(): gr.Interface( fn=run_inference, inputs=[ gr.Dropdown(choices=[ "OpenSora-v1-16x256x256.pth", "OpenSora-v1-HQ-16x256x256.pth", "OpenSora-v1-HQ-16x512x512.pth" ], value="OpenSora-v1-16x256x256.pth", label="Model Selection"), gr.Textbox(label="Prompt Text", value="Enter prompt text here") ], outputs=gr.Video(label="Output Video"), title="Open-Sora Inference", description="Run Open-Sora Inference with Custom Parameters", ).launch() if __name__ == "__main__": main()