File size: 20,894 Bytes
f440926
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e7df51
f440926
 
 
 
 
 
 
 
 
 
 
1e7df51
 
f440926
 
 
 
 
1e7df51
 
f440926
 
 
 
 
1e7df51
f440926
 
1e7df51
f440926
 
1e7df51
f440926
6aa61fa
f440926
6aa61fa
f440926
6aa61fa
 
 
 
f440926
 
6aa61fa
f440926
6aa61fa
 
f440926
 
6aa61fa
 
 
 
f440926
6aa61fa
f440926
6aa61fa
 
f440926
 
 
6aa61fa
 
 
 
f440926
6aa61fa
 
 
 
 
f440926
6aa61fa
 
 
 
 
 
 
 
f440926
 
 
6aa61fa
 
 
 
f440926
 
 
 
 
6aa61fa
 
f440926
 
6aa61fa
 
 
 
 
 
f440926
 
6aa61fa
 
f440926
 
6aa61fa
f440926
6aa61fa
f440926
 
6aa61fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f440926
 
6aa61fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e7df51
 
6aa61fa
1e7df51
 
 
 
 
 
6aa61fa
 
1e7df51
6aa61fa
 
 
 
 
1e7df51
6aa61fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f440926
 
6aa61fa
f440926
 
 
 
 
 
1e7df51
f440926
 
1e7df51
f440926
6aa61fa
 
1e7df51
f440926
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'  # Suppress TensorFlow logs (must be set before importing TensorFlow)
import tensorflow as tf
tf.get_logger().setLevel('ERROR')  # Suppress TensorFlow ERROR logs
import warnings
warnings.filterwarnings("ignore")  # Suppress all warnings

import argparse
from functools import reduce
from typing import List, Tuple
import shutil
import librosa
import numpy as np
from matplotlib import pyplot as plt
from pydub import AudioSegment
from pydub.silence import detect_nonsilent
from pytube import YouTube
from sklearn.preprocessing import StandardScaler
import shutil
import streamlit as st
import tempfile


# Constants
SR = 12000
HOP_LENGTH = 128
MAX_FRAMES = 300
MAX_METERS = 201
N_FEATURES = 15
MODEL_PATH = "models/CRNN/best_model_V3.h5"
AUDIO_TEMP_PATH = "output/temp"


def extract_audio(url):
    try:
        yt = YouTube(url)
        video_title = yt.title
        audio_stream = yt.streams.filter(only_audio=True).first()
        if audio_stream:
            temp_dir = tempfile.mkdtemp()
            out_file = audio_stream.download(temp_dir)
            base, _ = os.path.splitext(out_file)
            audio_file = base + '.mp3'
            if os.path.exists(audio_file):
                os.remove(audio_file)
            os.rename(out_file, audio_file)
            return audio_file, video_title, temp_dir
        else:
            st.error("No audio stream found")
            return None, None, None
    except Exception as e:
        st.error(f"An error occurred: {e}")
        return None, None, None


def strip_silence(audio_path):
    """Removes silent parts from an audio file."""
    sound = AudioSegment.from_file(audio_path)
    nonsilent_ranges = detect_nonsilent(
        sound, min_silence_len=500, silence_thresh=-50)
    stripped = reduce(lambda acc, val: acc + sound[val[0]:val[1]],
                      nonsilent_ranges, AudioSegment.empty())
    stripped.export(audio_path, format='mp3')


class AudioFeature:
    """Class for extracting and processing audio features."""

    def __init__(self, audio_path, sr=SR, hop_length=HOP_LENGTH):
        self.audio_path = audio_path
        self.beats = None
        self.chroma_acts = None
        self.chromagram = None
        self.combined_features = None
        self.hop_length = hop_length
        self.key, self.mode = None, None
        self.mel_acts = None
        self.melspectrogram = None
        self.meter_grid = None
        self.mfccs = None
        self.mfcc_acts = None
        self.n_frames = None
        self.onset_env = None
        self.rms = None
        self.spectrogram = None
        self.sr = sr
        self.tempo = None
        self.tempogram = None
        self.tempogram_acts = None
        self.time_signature = 4
        self.y = None
        self.y_harm, self.y_perc = None, None

    def detect_key(self, chroma_vals: np.ndarray) -> Tuple[str, str]:
        """Detect the key and mode (major or minor) of the audio segment."""
        note_names = ['C', 'C#', 'D', 'D#', 'E',
                      'F', 'F#', 'G', 'G#', 'A', 'A#', 'B']
        major_profile = np.array(
            [6.35, 2.23, 3.48, 2.33, 4.38, 4.09, 2.52, 5.19, 2.39, 3.66, 2.29, 2.88])
        minor_profile = np.array(
            [6.33, 2.68, 3.52, 5.38, 2.60, 3.53, 2.54, 4.75, 3.98, 2.69, 3.34, 3.17])
        major_profile /= np.linalg.norm(major_profile)
        minor_profile /= np.linalg.norm(minor_profile)

        major_correlations = [np.corrcoef(chroma_vals, np.roll(major_profile, i))[
            0, 1] for i in range(12)]
        minor_correlations = [np.corrcoef(chroma_vals, np.roll(minor_profile, i))[
            0, 1] for i in range(12)]

        max_major_idx = np.argmax(major_correlations)
        max_minor_idx = np.argmax(minor_correlations)

        self.mode = 'major' if major_correlations[max_major_idx] > minor_correlations[max_minor_idx] else 'minor'
        self.key = note_names[max_major_idx if self.mode ==
                              'major' else max_minor_idx]
        return self.key, self.mode

    def calculate_ki_chroma(self, waveform: np.ndarray, sr: int, hop_length: int) -> np.ndarray:
        """Calculate a normalized, key-invariant chromagram for the given audio waveform."""
        chromagram = librosa.feature.chroma_cqt(
            y=waveform, sr=sr, hop_length=hop_length, bins_per_octave=24)
        chromagram = (chromagram - chromagram.min()) / \
            (chromagram.max() - chromagram.min())
        chroma_vals = np.sum(chromagram, axis=1)
        key, mode = self.detect_key(chroma_vals)
        key_idx = ['C', 'C#', 'D', 'D#', 'E', 'F',
                   'F#', 'G', 'G#', 'A', 'A#', 'B'].index(key)
        shift_amount = -key_idx if mode == 'major' else -(key_idx + 3) % 12
        return librosa.util.normalize(np.roll(chromagram, shift_amount, axis=0), axis=1)

    def extract_features(self):
        """Extract various audio features from the loaded audio."""
        self.y, self.sr = librosa.load(self.audio_path, sr=self.sr)
        self.y_harm, self.y_perc = librosa.effects.hpss(self.y)
        self.spectrogram, _ = librosa.magphase(
            librosa.stft(self.y, hop_length=self.hop_length))
        self.rms = librosa.feature.rms(
            S=self.spectrogram, hop_length=self.hop_length).astype(np.float32)
        self.melspectrogram = librosa.feature.melspectrogram(
            y=self.y, sr=self.sr, n_mels=128, hop_length=self.hop_length).astype(np.float32)
        self.mel_acts = librosa.decompose.decompose(
            self.melspectrogram, n_components=3, sort=True)[1].astype(np.float32)
        self.chromagram = self.calculate_ki_chroma(
            self.y_harm, self.sr, self.hop_length).astype(np.float32)
        self.chroma_acts = librosa.decompose.decompose(
            self.chromagram, n_components=4, sort=True)[1].astype(np.float32)
        self.onset_env = librosa.onset.onset_strength(
            y=self.y_perc, sr=self.sr, hop_length=self.hop_length)
        self.tempogram = np.clip(librosa.feature.tempogram(
            onset_envelope=self.onset_env, sr=self.sr, hop_length=self.hop_length), 0, None)
        self.tempogram_acts = librosa.decompose.decompose(
            self.tempogram, n_components=3, sort=True)[1]
        self.mfccs = librosa.feature.mfcc(
            y=self.y, sr=self.sr, n_mfcc=20, hop_length=self.hop_length)
        self.mfccs += abs(np.min(self.mfccs))
        self.mfcc_acts = librosa.decompose.decompose(
            self.mfccs, n_components=4, sort=True)[1].astype(np.float32)

        features = [self.rms, self.mel_acts, self.chroma_acts,
                    self.tempogram_acts, self.mfcc_acts]
        feature_names = ['rms', 'mel_acts', 'chroma_acts',
                         'tempogram_acts', 'mfcc_acts']
        dims = {name: feature.shape[0]
                for feature, name in zip(features, feature_names)}
        total_inv_dim = sum(1 / dim for dim in dims.values())
        weights = {name: 1 / (dims[name] * total_inv_dim)
                   for name in feature_names}
        std_weighted_features = [StandardScaler().fit_transform(feature.T).T * weights[name]
                                 for feature, name in zip(features, feature_names)]
        self.combined_features = np.concatenate(
            std_weighted_features, axis=0).T.astype(np.float32)
        self.n_frames = len(self.combined_features)

    def create_meter_grid(self):
        """Create a grid based on the meter of the song, using tempo and beats."""
        self.tempo, self.beats = librosa.beat.beat_track(
            onset_envelope=self.onset_env, sr=self.sr, hop_length=self.hop_length)
        self.tempo = self.tempo * 2 if self.tempo < 70 else self.tempo / \
            2 if self.tempo > 140 else self.tempo
        self.meter_grid = self._create_meter_grid()
        return self.meter_grid

    def _create_meter_grid(self) -> np.ndarray:
        """
        Helper function to create a meter grid for the song, extrapolating both forwards and backwards from an anchor frame.

        Returns:
        - np.ndarray: The meter grid.
        """
        seconds_per_beat = 60 / self.tempo
        beat_interval = int(librosa.time_to_frames(
            seconds_per_beat, sr=self.sr, hop_length=self.hop_length))

        # Find the best matching start beat based on the tempo and existing beats
        best_match_start = max((1 - abs(np.mean(self.beats[i:i+3]) - beat_interval) / beat_interval, self.beats[i])
                               for i in range(len(self.beats) - 2))[1]
        anchor_frame = best_match_start if best_match_start > 0.95 else self.beats[0]
        first_beat_time = librosa.frames_to_time(
            anchor_frame, sr=self.sr, hop_length=self.hop_length)

        # Calculate the number of beats forward and backward
        time_duration = librosa.frames_to_time(
            self.n_frames, sr=self.sr, hop_length=self.hop_length)
        num_beats_forward = int(
            (time_duration - first_beat_time) / seconds_per_beat)
        num_beats_backward = int(first_beat_time / seconds_per_beat) + 1

        # Create beat times forward and backward
        beat_times_forward = first_beat_time + \
            np.arange(num_beats_forward) * seconds_per_beat
        beat_times_backward = first_beat_time - \
            np.arange(1, num_beats_backward) * seconds_per_beat

        # Combine and sort the beat times
        beat_grid = np.concatenate(
            (np.array([0.0]), beat_times_backward[::-1], beat_times_forward))
        meter_indices = np.arange(0, len(beat_grid), self.time_signature)
        meter_grid = beat_grid[meter_indices]

        # Ensure the meter grid starts at 0 and ends at frame_duration
        if meter_grid[0] != 0.0:
            meter_grid = np.insert(meter_grid, 0, 0.0)
        meter_grid = librosa.time_to_frames(
            meter_grid, sr=self.sr, hop_length=self.hop_length)
        if meter_grid[-1] != self.n_frames:
            meter_grid = np.append(meter_grid, self.n_frames)

        return meter_grid


def segment_data_meters(data: np.ndarray, meter_grid: List[int]) -> List[np.ndarray]:
    """
    Divide song data into segments based on measure grid frames.

    Parameters:
    - data (np.ndarray): The song data to be segmented.
    - meter_grid (List[int]): The grid indicating the start of each measure.

    Returns:
    - List[np.ndarray]: A list of song data segments.
    """
    meter_segments = [data[s:e]
                      for s, e in zip(meter_grid[:-1], meter_grid[1:])]
    meter_segments = [segment.astype(np.float32) for segment in meter_segments]
    return meter_segments


def positional_encoding(position: int, d_model: int) -> np.ndarray:
    """
    Generate a positional encoding for a given position and model dimension.

    Parameters:
    - position (int): The position for which to generate the encoding.
    - d_model (int): The dimension of the model.

    Returns:
    - np.ndarray: The positional encoding.
    """
    angle_rads = np.arange(position)[:, np.newaxis] / np.power(
        10000, (2 * (np.arange(d_model)[np.newaxis, :] // 2)) / np.float32(d_model))
    return np.concatenate([np.sin(angle_rads[:, 0::2]), np.cos(angle_rads[:, 1::2])], axis=-1)


def apply_hierarchical_positional_encoding(segments: List[np.ndarray]) -> List[np.ndarray]:
    """
    Apply positional encoding at the meter and frame levels to a list of segments.

    Parameters:
    - segments (List[np.ndarray]): The list of segments to encode.

    Returns:
    - List[np.ndarray]: The list of segments with applied positional encoding.
    """
    n_features = segments[0].shape[1]
    measure_level_encodings = positional_encoding(len(segments), n_features)
    return [
        seg + positional_encoding(len(seg), n_features) +
        measure_level_encodings[i]
        for i, seg in enumerate(segments)
    ]


def pad_song(encoded_segments: List[np.ndarray], max_frames: int = MAX_FRAMES, max_meters: int = MAX_METERS, n_features: int = N_FEATURES) -> np.ndarray:
    """
    Pad or truncate the encoded segments to have the specified max_frames and max_meters dimensions.

    Parameters:
    - encoded_segments (List[np.ndarray]): The encoded segments to pad or truncate.
    - max_frames (int): The maximum number of frames per segment.
    - max_meters (int): The maximum number of meters.
    - n_features (int): The number of features per frame.

    Returns:
    - np.ndarray: The padded or truncated song.
    """
    padded_meters = [
        np.pad(meter[:max_frames], ((0, max(0, max_frames -
               meter.shape[0])), (0, 0)), 'constant', constant_values=0)
        for meter in encoded_segments
    ]
    padding_meter = np.zeros((max_frames, n_features))
    padded_song = np.array(
        padded_meters[:max_meters] + [padding_meter] * max(0, max_meters - len(padded_meters)))
    return padded_song


def process_audio(audio_path, trim_silence=True, sr=SR, hop_length=HOP_LENGTH):
    """
    Process an audio file, extracting features and applying positional encoding.

    Parameters:
    - audio_path (str): The path to the audio file.
    - trim_silence (bool): Whether to trim silence from the audio.
    - sr (int): The sample rate to use when loading the audio.
    - hop_length (int): The hop length to use for feature extraction.

    Returns:
    - Tuple[np.ndarray, AudioFeature]: The processed audio and its features.
    """
    if trim_silence:
        strip_silence(audio_path)

    audio_features = AudioFeature(
        audio_path=audio_path, sr=sr, hop_length=hop_length)
    audio_features.extract_features()
    audio_features.create_meter_grid()
    audio_segments = segment_data_meters(
        audio_features.combined_features, audio_features.meter_grid)
    encoded_audio_segments = apply_hierarchical_positional_encoding(
        audio_segments)
    processed_audio = np.expand_dims(pad_song(encoded_audio_segments), axis=0)

    return processed_audio, audio_features

def load_model(model_path=MODEL_PATH):
    # Placeholder functions for loading the model
    def custom_binary_crossentropy(y_true, y_pred):
        return y_pred

    def custom_accuracy(y_true, y_pred):
        return y_pred

    custom_objects = {
        'custom_binary_crossentropy': custom_binary_crossentropy,
        'custom_accuracy': custom_accuracy
    }
    model = tf.keras.models.load_model(model_path, custom_objects=custom_objects)
    return model

def smooth_predictions(data: np.ndarray) -> np.ndarray:
    """
    Smooth predictions by correcting isolated mispredictions and removing short sequences of 1s.

    This function applies a smoothing algorithm to correct isolated zeros and ones in a sequence
    of binary predictions. It also removes isolated sequences of 1s that are shorter than 5.

    Parameters:
    - data (np.ndarray): Array of binary predictions.

    Returns:
    - np.ndarray: Smoothed array of binary predictions.
    """
    if not isinstance(data, np.ndarray):
        data = np.array(data)

    # First pass: Correct isolated 0's
    data_first_pass = data.copy()
    for i in range(1, len(data) - 1):
        if data[i] == 0 and data[i - 1] == 1 and data[i + 1] == 1:
            data_first_pass[i] = 1

    # Second pass: Correct isolated 1's
    corrected_data = data_first_pass.copy()
    for i in range(1, len(data_first_pass) - 1):
        if data_first_pass[i] == 1 and data_first_pass[i - 1] == 0 and data_first_pass[i + 1] == 0:
            corrected_data[i] = 0

    # Third pass: Remove short sequences of 1s (less than 5)
    smoothed_data = corrected_data.copy()
    sequence_start = None
    for i in range(len(corrected_data)):
        if corrected_data[i] == 1:
            if sequence_start is None:
                sequence_start = i
        else:
            if sequence_start is not None:
                sequence_length = i - sequence_start
                if sequence_length < 5:
                    smoothed_data[sequence_start:i] = 0
                sequence_start = None

    return smoothed_data

def make_predictions(model, processed_audio, audio_features, url, video_name):
    """
    Generate predictions from the model and process them to binary and smoothed predictions.

    Parameters:
    - model: The loaded model for making predictions.
    - processed_audio: The audio data that has been processed for prediction.
    - audio_features: Audio features object containing necessary metadata like meter grid.
    - url (str): YouTube URL of the audio file.
    - video_name (str): Name of the video.

    Returns:
    - np.ndarray: The smoothed binary predictions.
    """
    predictions = model.predict(processed_audio)[0]
    binary_predictions = np.round(
        predictions[:(len(audio_features.meter_grid) - 1)]).flatten()
    smoothed_predictions = smooth_predictions(binary_predictions)

    meter_grid_times = librosa.frames_to_time(
        audio_features.meter_grid, sr=audio_features.sr, hop_length=audio_features.hop_length)
    chorus_start_times = [meter_grid_times[i] for i in range(len(
        smoothed_predictions)) if smoothed_predictions[i] == 1 and (i == 0 or smoothed_predictions[i - 1] == 0)]
    chorus_end_times = [meter_grid_times[i + 1] for i in range(len(
        smoothed_predictions)) if smoothed_predictions[i] == 1 and (i == len(smoothed_predictions) - 1 or smoothed_predictions[i + 1] == 0)]

    st.write(f"**Video Title:** {video_name}")
    st.write(f"**Number of choruses identified:** {len(chorus_start_times)}")

    for start_time, end_time in zip(chorus_start_times, chorus_end_times):
        link = f"{url}&t={int(start_time)}s"
        st.write(f"Chorus from {start_time:.2f}s to {end_time:.2f}s: [Link]({link})")

    if len(chorus_start_times) == 0:
        st.write("No choruses identified.")

    return smoothed_predictions


def plot_meter_lines(ax: plt.Axes, meter_grid_times: np.ndarray) -> None:
    """Draw meter grid lines on the plot."""
    for time in meter_grid_times:
        ax.axvline(x=time, color='grey', linestyle='--',
                   linewidth=1, alpha=0.6)


def plot_predictions(audio_features, predictions):
    meter_grid_times = librosa.frames_to_time(
        audio_features.meter_grid, sr=audio_features.sr, hop_length=audio_features.hop_length)
    fig, ax = plt.subplots(figsize=(12.5, 3), dpi=96)

    # Display harmonic and percussive components without adding them to the legend
    librosa.display.waveshow(audio_features.y_harm, sr=audio_features.sr,
                             alpha=0.8, ax=ax, color='deepskyblue')
    librosa.display.waveshow(audio_features.y_perc, sr=audio_features.sr,
                             alpha=0.7, ax=ax, color='plum')
    plot_meter_lines(ax, meter_grid_times)

    for i, prediction in enumerate(predictions):
        start_time = meter_grid_times[i]
        end_time = meter_grid_times[i + 1] if i < len(
            meter_grid_times) - 1 else len(audio_features.y) / audio_features.sr
        if prediction == 1:
            ax.axvspan(start_time, end_time, color='green', alpha=0.3,
                       label='Predicted Chorus' if i == 0 else None)

    ax.set_xlim([0, len(audio_features.y) / audio_features.sr])
    ax.set_ylabel('Amplitude')
    audio_file_name = os.path.basename(audio_features.audio_path)
    ax.set_title(
        f'Chorus Predictions for {os.path.splitext(audio_file_name)[0]}')

    # Add a green square patch to represent "Chorus" in the legend
    chorus_patch = plt.Rectangle((0, 0), 1, 1, fc='green', alpha=0.3)
    handles, labels = ax.get_legend_handles_labels()
    handles.append(chorus_patch)
    labels.append('Chorus')
    ax.legend(handles=handles, labels=labels)

    # Set x-tick labels every 10 seconds in single-digit minutes format
    duration = len(audio_features.y) / audio_features.sr
    xticks = np.arange(0, duration, 10)
    xlabels = [f"{int(tick // 60)}:{int(tick % 60):02d}" for tick in xticks]
    ax.set_xticks(xticks)
    ax.set_xticklabels(xlabels)

    plt.tight_layout()
    st.pyplot(plt)


def main():
    st.title("Chorus Finder")
    st.write("Upload a YouTube URL to find the chorus in the song.")
    url = st.text_input("YouTube URL")
    if st.button("Find Chorus"):
        if url:
            audio_file, video_title, temp_dir = extract_audio(url)
            if audio_file:
                strip_silence(audio_file)
                processed_audio, audio_features = process_audio(audio_path=audio_file)
                model = load_model()
                smoothed_predictions = make_predictions(model, processed_audio, audio_features, url, video_title)
                plot_predictions(audio_features=audio_features, predictions=smoothed_predictions)
                shutil.rmtree(temp_dir)
        else:
            st.error("Please enter a valid YouTube URL")

if __name__ == "__main__":
    main()