dennisvdang's picture
Add YouTube download fallback and direct file upload option
eca162c
import os
import shutil
import numpy as np
import librosa
import tensorflow as tf
import streamlit as st
from pytube import YouTube
from pydub import AudioSegment
from pydub.silence import detect_nonsilent
from functools import reduce
from sklearn.preprocessing import StandardScaler
from matplotlib import pyplot as plt
import tempfile
import yt_dlp
# Constants
SR = 12000
HOP_LENGTH = 128
MAX_FRAMES = 300
MAX_METERS = 201
N_FEATURES = 15
MODEL_PATH = "models/chorus_detection_crnn.h5"
# Suppress TensorFlow logs
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
tf.get_logger().setLevel('ERROR')
def extract_audio(url):
try:
# Attempt to use pytube
yt = YouTube(url)
video_title = yt.title
audio_stream = yt.streams.filter(only_audio=True).first()
if audio_stream:
temp_dir = tempfile.mkdtemp()
out_file = audio_stream.download(temp_dir)
base, _ = os.path.splitext(out_file)
audio_file = base + '.mp3'
if os.path.exists(audio_file):
os.remove(audio_file)
os.rename(out_file, audio_file)
return audio_file, video_title, temp_dir
else:
st.warning("No audio stream found with pytube. Trying yt-dlp...")
return extract_audio_with_ytdlp(url)
except Exception as e:
st.warning(f"pytube error: {e}. Falling back to yt-dlp.")
return extract_audio_with_ytdlp(url)
def extract_audio_with_ytdlp(url):
try:
temp_dir = tempfile.mkdtemp()
ydl_opts = {
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'mp3',
'preferredquality': '192',
}],
'outtmpl': '%(title)s.%(ext)s',
'paths': {'home': temp_dir},
# Add options to help bypass YouTube restrictions
'nocheckcertificate': True,
'ignoreerrors': True,
'no_warnings': True,
'quiet': True,
'cookiefile': None, # Use cookies if available
'extractor_args': {'youtube': {'player_client': ['web']}}, # Use web player
# Add more random headers to avoid detection
'http_headers': {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/93.0.4577.82 Safari/537.36',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
'Accept-Language': 'en-US,en;q=0.5',
'Accept-Encoding': 'gzip, deflate',
'DNT': '1',
'Connection': 'keep-alive',
}
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info_dict = ydl.extract_info(url, download=True)
if not info_dict:
st.error("Could not process this YouTube URL. The video might be age-restricted or protected.")
return None, None, None
video_title = info_dict.get('title', None)
if not video_title:
st.error("Could not retrieve video title")
return None, None, None
audio_file = os.path.join(temp_dir, f"{video_title}.mp3")
if not os.path.exists(audio_file):
# Try alternate filename format which might be used by yt-dlp
possible_files = [f for f in os.listdir(temp_dir) if f.endswith('.mp3')]
if possible_files:
audio_file = os.path.join(temp_dir, possible_files[0])
else:
st.error("Downloaded file not found")
return None, None, None
return audio_file, video_title, temp_dir
except Exception as e:
error_message = str(e)
if "Sign in to confirm you're not a bot" in error_message:
st.error("YouTube is detecting automated access. Try a different video or try again later.")
elif "This video is unavailable" in error_message:
st.error("This video is unavailable or may be restricted.")
else:
st.error(f"An error occurred with yt-dlp: {e}")
return None, None, None
def strip_silence(audio_path):
sound = AudioSegment.from_file(audio_path)
nonsilent_ranges = detect_nonsilent(
sound, min_silence_len=500, silence_thresh=-50)
stripped = reduce(lambda acc, val: acc + sound[val[0]:val[1]],
nonsilent_ranges, AudioSegment.empty())
stripped.export(audio_path, format='mp3')
class AudioFeature:
def __init__(self, audio_path, sr=SR, hop_length=HOP_LENGTH):
self.audio_path = audio_path
self.beats = None
self.chroma_acts = None
self.chromagram = None
self.combined_features = None
self.hop_length = hop_length
self.key, self.mode = None, None
self.mel_acts = None
self.melspectrogram = None
self.meter_grid = None
self.mfccs = None
self.mfcc_acts = None
self.n_frames = None
self.onset_env = None
self.rms = None
self.spectrogram = None
self.sr = sr
self.tempo = None
self.tempogram = None
self.tempogram_acts = None
self.time_signature = 4
self.y = None
self.y_harm, self.y_perc = None, None
def detect_key(self, chroma_vals: np.ndarray):
note_names = ['C', 'C#', 'D', 'D#', 'E',
'F', 'F#', 'G', 'G#', 'A', 'A#', 'B']
major_profile = np.array(
[6.35, 2.23, 3.48, 2.33, 4.38, 4.09, 2.52, 5.19, 2.39, 3.66, 2.29, 2.88])
minor_profile = np.array(
[6.33, 2.68, 3.52, 5.38, 2.60, 3.53, 2.54, 4.75, 3.98, 2.69, 3.34, 3.17])
major_profile /= np.linalg.norm(major_profile)
minor_profile /= np.linalg.norm(minor_profile)
major_correlations = [np.corrcoef(chroma_vals, np.roll(major_profile, i))[
0, 1] for i in range(12)]
minor_correlations = [np.corrcoef(chroma_vals, np.roll(minor_profile, i))[
0, 1] for i in range(12)]
max_major_idx = np.argmax(major_correlations)
max_minor_idx = np.argmax(minor_correlations)
self.mode = 'major' if major_correlations[max_major_idx] > minor_correlations[max_minor_idx] else 'minor'
self.key = note_names[max_major_idx if self.mode ==
'major' else max_minor_idx]
return self.key, self.mode
def calculate_ki_chroma(self, waveform: np.ndarray, sr: int, hop_length: int) -> np.ndarray:
chromagram = librosa.feature.chroma_cqt(
y=waveform, sr=sr, hop_length=hop_length, bins_per_octave=24)
chromagram = (chromagram - chromagram.min()) / \
(chromagram.max() - chromagram.min())
chroma_vals = np.sum(chromagram, axis=1)
key, mode = self.detect_key(chroma_vals)
key_idx = ['C', 'C#', 'D', 'D#', 'E', 'F',
'F#', 'G', 'G#', 'A', 'A#', 'B'].index(key)
shift_amount = -key_idx if mode == 'major' else -(key_idx + 3) % 12
return librosa.util.normalize(np.roll(chromagram, shift_amount, axis=0), axis=1)
def extract_features(self):
self.y, self.sr = librosa.load(self.audio_path, sr=self.sr)
self.y_harm, self.y_perc = librosa.effects.hpss(self.y)
self.spectrogram, _ = librosa.magphase(
librosa.stft(self.y, hop_length=self.hop_length))
self.rms = librosa.feature.rms(
S=self.spectrogram, hop_length=self.hop_length).astype(np.float32)
self.melspectrogram = librosa.feature.melspectrogram(
y=self.y, sr=self.sr, n_mels=128, hop_length=self.hop_length).astype(np.float32)
self.mel_acts = librosa.decompose.decompose(
self.melspectrogram, n_components=3, sort=True)[1].astype(np.float32)
self.chromagram = self.calculate_ki_chroma(
self.y_harm, self.sr, self.hop_length).astype(np.float32)
self.chroma_acts = librosa.decompose.decompose(
self.chromagram, n_components=4, sort=True)[1].astype(np.float32)
self.onset_env = librosa.onset.onset_strength(
y=self.y_perc, sr=self.sr, hop_length=self.hop_length)
self.tempogram = np.clip(librosa.feature.tempogram(
onset_envelope=self.onset_env, sr=self.sr, hop_length=self.hop_length), 0, None)
self.tempogram_acts = librosa.decompose.decompose(
self.tempogram, n_components=3, sort=True)[1]
self.mfccs = librosa.feature.mfcc(
y=self.y, sr=self.sr, n_mfcc=20, hop_length=self.hop_length)
self.mfccs += abs(np.min(self.mfccs))
self.mfcc_acts = librosa.decompose.decompose(
self.mfccs, n_components=4, sort=True)[1].astype(np.float32)
features = [self.rms, self.mel_acts, self.chroma_acts,
self.tempogram_acts, self.mfcc_acts]
feature_names = ['rms', 'mel_acts', 'chroma_acts',
'tempogram_acts', 'mfcc_acts']
dims = {name: feature.shape[0]
for feature, name in zip(features, feature_names)}
total_inv_dim = sum(1 / dim for dim in dims.values())
weights = {name: 1 / (dims[name] * total_inv_dim)
for name in feature_names}
std_weighted_features = [StandardScaler().fit_transform(feature.T).T * weights[name]
for feature, name in zip(features, feature_names)]
self.combined_features = np.concatenate(
std_weighted_features, axis=0).T.astype(np.float32)
self.n_frames = len(self.combined_features)
def create_meter_grid(self):
self.tempo, self.beats = librosa.beat.beat_track(
onset_envelope=self.onset_env, sr=self.sr, hop_length=self.hop_length)
self.tempo = self.tempo * 2 if self.tempo < 70 else self.tempo / \
2 if self.tempo > 140 else self.tempo
self.meter_grid = self._create_meter_grid()
return self.meter_grid
def _create_meter_grid(self) -> np.ndarray:
"""Helper function to create a meter grid for the song, extrapolating both forwards and backwards from an anchor frame."""
seconds_per_beat = 60 / self.tempo
beat_interval = int(librosa.time_to_frames(
seconds_per_beat, sr=self.sr, hop_length=self.hop_length))
# Find the best matching start beat based on the tempo and existing beats
best_match_start = max((1 - abs(np.mean(self.beats[i:i+3]) - beat_interval) / beat_interval, self.beats[i])
for i in range(len(self.beats) - 2))[1]
anchor_frame = best_match_start if best_match_start > 0.95 else self.beats[0]
first_beat_time = librosa.frames_to_time(
anchor_frame, sr=self.sr, hop_length=self.hop_length)
# Calculate the number of beats forward and backward
time_duration = librosa.frames_to_time(
self.n_frames, sr=self.sr, hop_length=self.hop_length)
num_beats_forward = int(
(time_duration - first_beat_time) / seconds_per_beat)
num_beats_backward = int(first_beat_time / seconds_per_beat) + 1
# Create beat times forward and backward
beat_times_forward = first_beat_time + \
np.arange(num_beats_forward) * seconds_per_beat
beat_times_backward = first_beat_time - \
np.arange(1, num_beats_backward) * seconds_per_beat
# Combine and sort the beat times
beat_grid = np.concatenate(
(np.array([0.0]), beat_times_backward[::-1], beat_times_forward))
meter_indices = np.arange(0, len(beat_grid), self.time_signature)
meter_grid = beat_grid[meter_indices]
# Ensure the meter grid starts at 0 and ends at frame_duration
if meter_grid[0] != 0.0:
meter_grid = np.insert(meter_grid, 0, 0.0)
meter_grid = librosa.time_to_frames(
meter_grid, sr=self.sr, hop_length=self.hop_length)
if meter_grid[-1] != self.n_frames:
meter_grid = np.append(meter_grid, self.n_frames)
return meter_grid
def segment_data_meters(data: np.ndarray, meter_grid):
meter_segments = [data[s:e]
for s, e in zip(meter_grid[:-1], meter_grid[1:])]
meter_segments = [segment.astype(np.float32) for segment in meter_segments]
return meter_segments
def positional_encoding(position: int, d_model: int) -> np.ndarray:
"""Generate a positional encoding for a given position and model dimension."""
angle_rads = np.arange(position)[:, np.newaxis] / np.power(
10000, (2 * (np.arange(d_model)[np.newaxis, :] // 2)) / np.float32(d_model))
return np.concatenate([np.sin(angle_rads[:, 0::2]), np.cos(angle_rads[:, 1::2])], axis=-1)
def apply_hierarchical_positional_encoding(segments):
"""Apply positional encoding at the meter and frame levels to a list of segments."""
n_features = segments[0].shape[1]
measure_level_encodings = positional_encoding(len(segments), n_features)
return [
seg + positional_encoding(len(seg), n_features) +
measure_level_encodings[i]
for i, seg in enumerate(segments)
]
def pad_song(encoded_segments, max_frames: int = MAX_FRAMES, max_meters: int = MAX_METERS, n_features: int = N_FEATURES) -> np.ndarray:
padded_meters = [
np.pad(meter[:max_frames], ((0, max(0, max_frames -
meter.shape[0])), (0, 0)), 'constant', constant_values=0)
for meter in encoded_segments
]
padding_meter = np.zeros((max_frames, n_features))
padded_song = np.array(
padded_meters[:max_meters] + [padding_meter] * max(0, max_meters - len(padded_meters)))
return padded_song
def process_audio(audio_path, trim_silence=True, sr=SR, hop_length=HOP_LENGTH):
"""Process an audio file, extracting features and applying positional encoding."""
if trim_silence:
strip_silence(audio_path)
audio_features = AudioFeature(
audio_path=audio_path, sr=sr, hop_length=hop_length)
audio_features.extract_features()
audio_features.create_meter_grid()
audio_segments = segment_data_meters(
audio_features.combined_features, audio_features.meter_grid)
encoded_audio_segments = apply_hierarchical_positional_encoding(
audio_segments)
processed_audio = np.expand_dims(pad_song(encoded_audio_segments), axis=0)
return processed_audio, audio_features
def load_model(model_path=MODEL_PATH):
# Placeholder functions for loading the model
def custom_binary_crossentropy(y_true, y_pred):
return y_pred
def custom_accuracy(y_true, y_pred):
return y_pred
custom_objects = {
'custom_binary_crossentropy': custom_binary_crossentropy,
'custom_accuracy': custom_accuracy
}
model = tf.keras.models.load_model(model_path, custom_objects=custom_objects)
return model
def smooth_predictions(data: np.ndarray) -> np.ndarray:
"""
Smooth predictions by correcting isolated mispredictions and removing short sequences of 1s.
This function applies a smoothing algorithm to correct isolated zeros and ones in a sequence
of binary predictions. It also removes isolated sequences of 1s that are shorter than 5.
"""
if not isinstance(data, np.ndarray):
data = np.array(data)
# First pass: Correct isolated 0's
data_first_pass = data.copy()
for i in range(1, len(data) - 1):
if data[i] == 0 and data[i - 1] == 1 and data[i + 1] == 1:
data_first_pass[i] = 1
# Second pass: Correct isolated 1's
corrected_data = data_first_pass.copy()
for i in range(1, len(data_first_pass) - 1):
if data_first_pass[i] == 1 and data_first_pass[i - 1] == 0 and data_first_pass[i + 1] == 0:
corrected_data[i] = 0
# Third pass: Remove short sequences of 1s (less than 5)
smoothed_data = corrected_data.copy()
sequence_start = None
for i in range(len(corrected_data)):
if corrected_data[i] == 1:
if sequence_start is None:
sequence_start = i
else:
if sequence_start is not None:
sequence_length = i - sequence_start
if sequence_length < 5:
smoothed_data[sequence_start:i] = 0
sequence_start = None
return smoothed_data
def format_time(seconds):
m, s = divmod(seconds, 60)
return f"{int(m)}:{s:05.2f}"
def make_predictions(model, processed_audio, audio_features, url, video_name):
predictions = model.predict(processed_audio)[0]
binary_predictions = np.round(predictions[:(len(audio_features.meter_grid) - 1)]).flatten()
smoothed_predictions = smooth_predictions(binary_predictions)
meter_grid_times = librosa.frames_to_time(audio_features.meter_grid, sr=audio_features.sr, hop_length=audio_features.hop_length)
chorus_start_times = [meter_grid_times[i] for i in range(len(smoothed_predictions)) if smoothed_predictions[i] == 1 and (i == 0 or smoothed_predictions[i - 1] == 0)]
chorus_end_times = [meter_grid_times[i + 1] for i in range(len(smoothed_predictions)) if smoothed_predictions[i] == 1 and (i == len(smoothed_predictions) - 1 or smoothed_predictions[i + 1] == 0)]
st.write(f"**Title:** {video_name}")
st.write(f"**Number of choruses identified:** {len(chorus_start_times)}")
for i, (start_time, end_time) in enumerate(zip(chorus_start_times, chorus_end_times)):
if url: # Only create YouTube timestamp links if we have a URL
link = f"{url}&t={int(start_time)}s"
st.write(f"Chorus {i+1}: {format_time(start_time)} to {format_time(end_time)}: [{link}]({link})")
else:
st.write(f"Chorus {i+1}: {format_time(start_time)} to {format_time(end_time)}")
if len(chorus_start_times) == 0:
st.write("No choruses identified.")
return smoothed_predictions
def plot_meter_lines(ax: plt.Axes, meter_grid_times: np.ndarray) -> None:
for time in meter_grid_times:
ax.axvline(x=time, color='grey', linestyle='--',
linewidth=1, alpha=0.6)
def plot_predictions(audio_features, predictions):
meter_grid_times = librosa.frames_to_time(
audio_features.meter_grid, sr=audio_features.sr, hop_length=audio_features.hop_length)
fig, ax = plt.subplots(figsize=(12.5, 3), dpi=96)
# Display harmonic and percussive components without adding them to the legend
librosa.display.waveshow(audio_features.y_harm, sr=audio_features.sr,
alpha=0.8, ax=ax, color='deepskyblue')
librosa.display.waveshow(audio_features.y_perc, sr=audio_features.sr,
alpha=0.7, ax=ax, color='plum')
plot_meter_lines(ax, meter_grid_times)
for i, prediction in enumerate(predictions):
start_time = meter_grid_times[i]
end_time = meter_grid_times[i + 1] if i < len(
meter_grid_times) - 1 else len(audio_features.y) / audio_features.sr
if prediction == 1:
ax.axvspan(start_time, end_time, color='green', alpha=0.3,
label='Predicted Chorus' if i == 0 else None)
ax.set_xlim([0, len(audio_features.y) / audio_features.sr])
ax.set_ylabel('Amplitude')
audio_file_name = os.path.basename(audio_features.audio_path)
ax.set_title(
f'Chorus Predictions for {os.path.splitext(audio_file_name)[0]}')
# Add a green square patch to represent "Chorus" in the legend
chorus_patch = plt.Rectangle((0, 0), 1, 1, fc='green', alpha=0.3)
handles, labels = ax.get_legend_handles_labels()
handles.append(chorus_patch)
labels.append('Chorus')
ax.legend(handles=handles, labels=labels)
# Set x-tick labels every 10 seconds in single-digit minutes format
duration = len(audio_features.y) / audio_features.sr
xticks = np.arange(0, duration, 10)
xlabels = [f"{int(tick // 60)}:{int(tick % 60):02d}" for tick in xticks]
ax.set_xticks(xticks)
ax.set_xticklabels(xlabels)
plt.tight_layout()
st.pyplot(plt)
def main():
cover_image = "images/cover.jpg"
st.image(cover_image, use_column_width=True)
st.title("Chorus Finder")
st.write("This app uses a pre-trained convolutional recurrent neural network to predict chorus locations in music. To learn more about this project, visit [github.com/dennisvdang/chorus-detection](https://github.com/dennisvdang/chorus-detection).")
st.write("### Option 1: YouTube URL")
url = st.text_input("Enter a YouTube URL")
process_youtube = st.button("Find Chorus from YouTube")
st.write("### Option 2: Upload Audio File")
st.write("If YouTube downloading fails, you can upload an MP3 file directly")
uploaded_file = st.file_uploader("Choose an MP3 file", type=['mp3'])
process_upload = st.button("Find Chorus from Upload")
if process_youtube and url:
with st.spinner('Analyzing YouTube link...'):
audio_file, video_title, temp_dir = extract_audio(url)
if audio_file:
with st.spinner('Processing audio...'):
# Ensure we strip silence for YouTube downloads
strip_silence(audio_file)
processed_audio, audio_features = process_audio(audio_path=audio_file, trim_silence=False)
with st.spinner('Loading model...'):
model = load_model(MODEL_PATH)
with st.spinner('Making predictions...'):
smoothed_predictions = make_predictions(model, processed_audio, audio_features, url, video_title)
with st.spinner('Plotting predictions...'):
plot_predictions(audio_features, smoothed_predictions)
shutil.rmtree(temp_dir)
else:
st.error("Failed to download from YouTube. Please try uploading the audio file directly instead.")
elif process_upload and uploaded_file is not None:
# Save the uploaded file to a temporary directory
with st.spinner('Processing uploaded file...'):
temp_dir = tempfile.mkdtemp()
temp_path = os.path.join(temp_dir, "uploaded_audio.mp3")
with open(temp_path, "wb") as f:
f.write(uploaded_file.getbuffer())
# Use the filename as the video title
file_title = uploaded_file.name.replace('.mp3', '')
# Process the uploaded file
strip_silence(temp_path)
processed_audio, audio_features = process_audio(audio_path=temp_path, trim_silence=False)
model = load_model(MODEL_PATH)
# Since we don't have a YouTube URL for the uploaded file, pass an empty string
smoothed_predictions = make_predictions(model, processed_audio, audio_features, "", file_title)
plot_predictions(audio_features, smoothed_predictions)
shutil.rmtree(temp_dir)
elif (process_youtube and not url) or (process_upload and uploaded_file is None):
if process_youtube and not url:
st.error("Please enter a valid YouTube URL")
if process_upload and uploaded_file is None:
st.error("Please upload an MP3 file")
if __name__ == "__main__":
main()