Spaces:
Running
Running
Commit
·
538987f
1
Parent(s):
54e865e
Fix import structure to resolve circular imports
Browse files- app.py +11 -37
- download_model.py +82 -22
- src/streamlit_app.py +495 -0
app.py
CHANGED
@@ -3,7 +3,8 @@
|
|
3 |
|
4 |
"""
|
5 |
Main entry point for the Chorus Detection Streamlit app.
|
6 |
-
This file
|
|
|
7 |
"""
|
8 |
|
9 |
import os
|
@@ -24,43 +25,16 @@ if os.environ.get("SPACE_ID"):
|
|
24 |
logger.info(f"MODEL_REVISION: {os.environ.get('MODEL_REVISION')}")
|
25 |
logger.info(f"Current working directory: {os.getcwd()}")
|
26 |
logger.info(f"Directory contents: {os.listdir()}")
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
logger.info(f"Python path: {sys.path}")
|
36 |
-
except Exception as e:
|
37 |
-
logger.error(f"Error setting up Python path: {e}")
|
38 |
-
sys.exit(1)
|
39 |
-
|
40 |
-
# Import the app module from src
|
41 |
-
try:
|
42 |
-
# Try direct import first
|
43 |
-
if os.path.exists(os.path.join(src_dir, "app.py")):
|
44 |
-
import src.app as app_module
|
45 |
-
logger.info("Successfully imported app module directly")
|
46 |
-
main = app_module.main
|
47 |
-
else:
|
48 |
-
# Fall back to regular import
|
49 |
-
from src.app import main
|
50 |
-
logger.info("Successfully imported main from src.app")
|
51 |
-
except ImportError as e:
|
52 |
-
logger.error(f"Failed to import main from src.app: {e}")
|
53 |
-
logger.info(f"Trying alternative import approach...")
|
54 |
-
|
55 |
-
try:
|
56 |
-
# Try importing directly from the current directory
|
57 |
-
sys.path.append('.')
|
58 |
-
from app import main as direct_main
|
59 |
-
main = direct_main
|
60 |
-
logger.info("Successfully imported main using direct approach")
|
61 |
-
except ImportError as e2:
|
62 |
-
logger.error(f"All import attempts failed: {e2}")
|
63 |
-
sys.exit(1)
|
64 |
|
65 |
if __name__ == "__main__":
|
66 |
try:
|
|
|
3 |
|
4 |
"""
|
5 |
Main entry point for the Chorus Detection Streamlit app.
|
6 |
+
This file is a simple wrapper that starts the Streamlit app
|
7 |
+
without circular imports.
|
8 |
"""
|
9 |
|
10 |
import os
|
|
|
25 |
logger.info(f"MODEL_REVISION: {os.environ.get('MODEL_REVISION')}")
|
26 |
logger.info(f"Current working directory: {os.getcwd()}")
|
27 |
logger.info(f"Directory contents: {os.listdir()}")
|
28 |
+
if os.path.exists('src'):
|
29 |
+
logger.info(f"src directory contents: {os.listdir('src')}")
|
30 |
|
31 |
+
def main():
|
32 |
+
"""Main entry point for the Streamlit app."""
|
33 |
+
logger.info("Starting Streamlit app...")
|
34 |
+
# Import the Streamlit app module directly
|
35 |
+
import src.streamlit_app
|
36 |
+
# Run the Streamlit app
|
37 |
+
src.streamlit_app.main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
if __name__ == "__main__":
|
40 |
try:
|
download_model.py
CHANGED
@@ -12,22 +12,31 @@ import sys
|
|
12 |
from pathlib import Path
|
13 |
import logging
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
# Use huggingface_hub for better integration with HF ecosystem
|
16 |
try:
|
17 |
from huggingface_hub import hf_hub_download
|
18 |
HF_HUB_AVAILABLE = True
|
|
|
19 |
except ImportError:
|
20 |
HF_HUB_AVAILABLE = False
|
|
|
21 |
import requests
|
22 |
from tqdm import tqdm
|
23 |
|
24 |
-
# Configure logging
|
25 |
-
logging.basicConfig(
|
26 |
-
level=logging.INFO,
|
27 |
-
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
28 |
-
)
|
29 |
-
logger = logging.getLogger("model-downloader")
|
30 |
-
|
31 |
def download_file_with_progress(url: str, destination: Path) -> None:
|
32 |
"""Download a file with a progress bar.
|
33 |
|
@@ -61,9 +70,10 @@ def download_file_with_progress(url: str, destination: Path) -> None:
|
|
61 |
|
62 |
def ensure_model_exists(
|
63 |
model_filename: str = "best_model_V3.h5",
|
64 |
-
repo_id: str =
|
65 |
-
model_dir: Path =
|
66 |
-
hf_model_filename: str =
|
|
|
67 |
) -> Path:
|
68 |
"""Ensure the model file exists, downloading it if necessary.
|
69 |
|
@@ -72,12 +82,59 @@ def ensure_model_exists(
|
|
72 |
repo_id: HuggingFace repository ID
|
73 |
model_dir: Directory to save the model to
|
74 |
hf_model_filename: Filename of the model in the HuggingFace repo
|
|
|
75 |
|
76 |
Returns:
|
77 |
Path to the model file
|
78 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
model_path = model_dir / model_filename
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
# Check if the model already exists
|
82 |
if model_path.exists():
|
83 |
logger.info(f"Model already exists at {model_path}")
|
@@ -91,14 +148,17 @@ def ensure_model_exists(
|
|
91 |
try:
|
92 |
if HF_HUB_AVAILABLE:
|
93 |
# Use huggingface_hub to download the model
|
94 |
-
logger.info(f"Downloading model from {repo_id}/{hf_model_filename} using huggingface_hub")
|
95 |
downloaded_path = hf_hub_download(
|
96 |
repo_id=repo_id,
|
97 |
filename=hf_model_filename,
|
98 |
local_dir=model_dir,
|
99 |
-
local_dir_use_symlinks=False
|
|
|
100 |
)
|
101 |
|
|
|
|
|
102 |
# Rename if necessary
|
103 |
if os.path.basename(downloaded_path) != model_filename:
|
104 |
downloaded_path_obj = Path(downloaded_path)
|
@@ -109,20 +169,20 @@ def ensure_model_exists(
|
|
109 |
logger.info(f"Renamed {downloaded_path} to {model_path}")
|
110 |
else:
|
111 |
# Fallback to direct download if huggingface_hub is not available
|
112 |
-
huggingface_url = f"https://huggingface.co/{repo_id}/resolve/
|
113 |
download_file_with_progress(huggingface_url, model_path)
|
114 |
|
115 |
logger.info(f"Successfully downloaded model to {model_path}")
|
116 |
return model_path
|
117 |
except Exception as e:
|
118 |
-
logger.error(f"Failed to download model: {e}")
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
if __name__ == "__main__":
|
122 |
-
|
123 |
-
repo_id = os.environ.get("MODEL_HF_REPO", "dennisvdang/chorus-detection")
|
124 |
-
|
125 |
-
# Check if an alternative model filename was provided
|
126 |
-
hf_model_filename = os.environ.get("HF_MODEL_FILENAME", "chorus_detection_crnn.h5")
|
127 |
-
|
128 |
-
ensure_model_exists(repo_id=repo_id, hf_model_filename=hf_model_filename)
|
|
|
12 |
from pathlib import Path
|
13 |
import logging
|
14 |
|
15 |
+
# Configure logging
|
16 |
+
logging.basicConfig(
|
17 |
+
level=logging.INFO,
|
18 |
+
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
19 |
+
)
|
20 |
+
logger = logging.getLogger("model-downloader")
|
21 |
+
|
22 |
+
# Debug environment info
|
23 |
+
logger.info(f"Current working directory: {os.getcwd()}")
|
24 |
+
logger.info(f"Python path: {sys.path}")
|
25 |
+
logger.info(f"MODEL_REVISION: {os.environ.get('MODEL_REVISION')}")
|
26 |
+
logger.info(f"MODEL_HF_REPO: {os.environ.get('MODEL_HF_REPO')}")
|
27 |
+
logger.info(f"HF_MODEL_FILENAME: {os.environ.get('HF_MODEL_FILENAME')}")
|
28 |
+
|
29 |
# Use huggingface_hub for better integration with HF ecosystem
|
30 |
try:
|
31 |
from huggingface_hub import hf_hub_download
|
32 |
HF_HUB_AVAILABLE = True
|
33 |
+
logger.info("huggingface_hub is available")
|
34 |
except ImportError:
|
35 |
HF_HUB_AVAILABLE = False
|
36 |
+
logger.warning("huggingface_hub is not available, falling back to direct download")
|
37 |
import requests
|
38 |
from tqdm import tqdm
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
def download_file_with_progress(url: str, destination: Path) -> None:
|
41 |
"""Download a file with a progress bar.
|
42 |
|
|
|
70 |
|
71 |
def ensure_model_exists(
|
72 |
model_filename: str = "best_model_V3.h5",
|
73 |
+
repo_id: str = None,
|
74 |
+
model_dir: Path = None,
|
75 |
+
hf_model_filename: str = None,
|
76 |
+
revision: str = None
|
77 |
) -> Path:
|
78 |
"""Ensure the model file exists, downloading it if necessary.
|
79 |
|
|
|
82 |
repo_id: HuggingFace repository ID
|
83 |
model_dir: Directory to save the model to
|
84 |
hf_model_filename: Filename of the model in the HuggingFace repo
|
85 |
+
revision: Specific version of the model to use (SHA-256 hash)
|
86 |
|
87 |
Returns:
|
88 |
Path to the model file
|
89 |
"""
|
90 |
+
# Get parameters from environment variables if not provided
|
91 |
+
if repo_id is None:
|
92 |
+
repo_id = os.environ.get("MODEL_HF_REPO", "dennisvdang/chorus-detection")
|
93 |
+
|
94 |
+
if hf_model_filename is None:
|
95 |
+
hf_model_filename = os.environ.get("HF_MODEL_FILENAME", "chorus_detection_crnn.h5")
|
96 |
+
|
97 |
+
if revision is None:
|
98 |
+
revision = os.environ.get("MODEL_REVISION", "20e66eb3d0788373c3bdc5b28fa2f2587b0e475f3bbc47e8ab9ff0dbdbb2df32")
|
99 |
+
|
100 |
+
# Handle model directory paths for different environments
|
101 |
+
if model_dir is None:
|
102 |
+
# Check if we're in HF Spaces
|
103 |
+
if os.environ.get("SPACE_ID"):
|
104 |
+
# Try several possible locations
|
105 |
+
possible_dirs = [
|
106 |
+
Path("models/CRNN"),
|
107 |
+
Path("/home/user/app/models/CRNN"),
|
108 |
+
Path("/app/models/CRNN"),
|
109 |
+
Path(os.getcwd()) / "models" / "CRNN"
|
110 |
+
]
|
111 |
+
|
112 |
+
for directory in possible_dirs:
|
113 |
+
if directory.exists() or directory.parent.exists():
|
114 |
+
model_dir = directory
|
115 |
+
break
|
116 |
+
|
117 |
+
# If none exist, use the first option and create it
|
118 |
+
if model_dir is None:
|
119 |
+
model_dir = possible_dirs[0]
|
120 |
+
else:
|
121 |
+
model_dir = Path("models/CRNN")
|
122 |
+
|
123 |
+
# Make sure model_dir is a Path object
|
124 |
+
if isinstance(model_dir, str):
|
125 |
+
model_dir = Path(model_dir)
|
126 |
+
|
127 |
+
logger.info(f"Using model directory: {model_dir}")
|
128 |
+
|
129 |
model_path = model_dir / model_filename
|
130 |
|
131 |
+
# Log environment info when running in HF Space
|
132 |
+
if os.environ.get("SPACE_ID"):
|
133 |
+
logger.info(f"Running in Hugging Face Space: {os.environ.get('SPACE_ID')}")
|
134 |
+
logger.info(f"Using model repo: {repo_id}")
|
135 |
+
logger.info(f"Using model file: {hf_model_filename}")
|
136 |
+
logger.info(f"Using revision: {revision}")
|
137 |
+
|
138 |
# Check if the model already exists
|
139 |
if model_path.exists():
|
140 |
logger.info(f"Model already exists at {model_path}")
|
|
|
148 |
try:
|
149 |
if HF_HUB_AVAILABLE:
|
150 |
# Use huggingface_hub to download the model
|
151 |
+
logger.info(f"Downloading model from {repo_id}/{hf_model_filename} (revision: {revision}) using huggingface_hub")
|
152 |
downloaded_path = hf_hub_download(
|
153 |
repo_id=repo_id,
|
154 |
filename=hf_model_filename,
|
155 |
local_dir=model_dir,
|
156 |
+
local_dir_use_symlinks=False,
|
157 |
+
revision=revision # Specify the exact revision to use
|
158 |
)
|
159 |
|
160 |
+
logger.info(f"Downloaded to: {downloaded_path}")
|
161 |
+
|
162 |
# Rename if necessary
|
163 |
if os.path.basename(downloaded_path) != model_filename:
|
164 |
downloaded_path_obj = Path(downloaded_path)
|
|
|
169 |
logger.info(f"Renamed {downloaded_path} to {model_path}")
|
170 |
else:
|
171 |
# Fallback to direct download if huggingface_hub is not available
|
172 |
+
huggingface_url = f"https://huggingface.co/{repo_id}/resolve/{revision}/{hf_model_filename}"
|
173 |
download_file_with_progress(huggingface_url, model_path)
|
174 |
|
175 |
logger.info(f"Successfully downloaded model to {model_path}")
|
176 |
return model_path
|
177 |
except Exception as e:
|
178 |
+
logger.error(f"Failed to download model: {e}", exc_info=True)
|
179 |
+
|
180 |
+
# Handle error more gracefully in production environment
|
181 |
+
if os.environ.get("SPACE_ID"):
|
182 |
+
logger.warning("Continuing despite model download failure")
|
183 |
+
return model_path
|
184 |
+
else:
|
185 |
+
sys.exit(1)
|
186 |
|
187 |
if __name__ == "__main__":
|
188 |
+
ensure_model_exists()
|
|
|
|
|
|
|
|
|
|
|
|
src/streamlit_app.py
ADDED
@@ -0,0 +1,495 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
"""Streamlit web app for chorus detection in audio files.
|
5 |
+
|
6 |
+
This module provides a web-based interface for the chorus detection system,
|
7 |
+
allowing users to upload audio files or provide YouTube URLs for analysis.
|
8 |
+
"""
|
9 |
+
|
10 |
+
import os
|
11 |
+
import sys
|
12 |
+
import logging
|
13 |
+
|
14 |
+
# Configure logging
|
15 |
+
logger = logging.getLogger("streamlit-app")
|
16 |
+
|
17 |
+
# Configure TensorFlow logging before importing TensorFlow
|
18 |
+
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # Suppress TensorFlow logs
|
19 |
+
|
20 |
+
# Import model downloader to ensure model is available
|
21 |
+
try:
|
22 |
+
if os.path.exists(os.path.join(os.getcwd(), "download_model.py")):
|
23 |
+
# If in the root directory
|
24 |
+
from download_model import ensure_model_exists
|
25 |
+
else:
|
26 |
+
# If in the src directory
|
27 |
+
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
28 |
+
from download_model import ensure_model_exists
|
29 |
+
except ImportError as e:
|
30 |
+
logger.error(f"Error importing ensure_model_exists: {e}")
|
31 |
+
try:
|
32 |
+
# Try alternative import
|
33 |
+
from src.download_model import ensure_model_exists
|
34 |
+
except ImportError as e2:
|
35 |
+
logger.error(f"Alternative import failed: {e2}")
|
36 |
+
raise
|
37 |
+
|
38 |
+
import base64
|
39 |
+
import tempfile
|
40 |
+
import warnings
|
41 |
+
from typing import Optional, Tuple, List
|
42 |
+
import time
|
43 |
+
import io
|
44 |
+
|
45 |
+
import matplotlib.pyplot as plt
|
46 |
+
import streamlit as st
|
47 |
+
import tensorflow as tf
|
48 |
+
import librosa
|
49 |
+
import soundfile as sf
|
50 |
+
import numpy as np
|
51 |
+
from pydub import AudioSegment
|
52 |
+
|
53 |
+
# Suppress warnings
|
54 |
+
warnings.filterwarnings("ignore") # Suppress all warnings
|
55 |
+
tf.get_logger().setLevel('ERROR') # Suppress TensorFlow ERROR logs
|
56 |
+
|
57 |
+
try:
|
58 |
+
from chorus_detection.audio.data_processing import process_audio
|
59 |
+
from chorus_detection.audio.processor import extract_audio
|
60 |
+
from chorus_detection.models.crnn import load_CRNN_model, make_predictions
|
61 |
+
from chorus_detection.utils.cli import is_youtube_url
|
62 |
+
from chorus_detection.utils.logging import logger
|
63 |
+
except ImportError as e:
|
64 |
+
logger.error(f"Error importing chorus_detection modules: {e}")
|
65 |
+
logger.info("Trying alternative imports...")
|
66 |
+
# Adjust import paths as needed
|
67 |
+
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
68 |
+
from chorus_detection.audio.data_processing import process_audio
|
69 |
+
from chorus_detection.audio.processor import extract_audio
|
70 |
+
from chorus_detection.models.crnn import load_CRNN_model, make_predictions
|
71 |
+
from chorus_detection.utils.cli import is_youtube_url
|
72 |
+
from chorus_detection.utils.logging import logger
|
73 |
+
|
74 |
+
# Define the MODEL_PATH directly
|
75 |
+
MODEL_PATH = os.path.join(os.getcwd(), "models", "CRNN", "best_model_V3.h5")
|
76 |
+
if not os.path.exists(MODEL_PATH):
|
77 |
+
MODEL_PATH = ensure_model_exists()
|
78 |
+
|
79 |
+
# Define color scheme
|
80 |
+
THEME_COLORS = {
|
81 |
+
'background': '#121212',
|
82 |
+
'card_bg': '#181818',
|
83 |
+
'primary': '#1DB954',
|
84 |
+
'secondary': '#1ED760',
|
85 |
+
'text': '#FFFFFF',
|
86 |
+
'subtext': '#B3B3B3',
|
87 |
+
'highlight': '#1DB954',
|
88 |
+
'border': '#333333',
|
89 |
+
}
|
90 |
+
|
91 |
+
|
92 |
+
def get_binary_file_downloader_html(bin_file: str, file_label: str = 'File') -> str:
|
93 |
+
"""Generate HTML for file download link.
|
94 |
+
|
95 |
+
Args:
|
96 |
+
bin_file: Path to the binary file
|
97 |
+
file_label: Label for the download link
|
98 |
+
|
99 |
+
Returns:
|
100 |
+
HTML string for the download link
|
101 |
+
"""
|
102 |
+
with open(bin_file, 'rb') as f:
|
103 |
+
data = f.read()
|
104 |
+
b64 = base64.b64encode(data).decode()
|
105 |
+
return f'<a href="data:application/octet-stream;base64,{b64}" download="{os.path.basename(bin_file)}">{file_label}</a>'
|
106 |
+
|
107 |
+
|
108 |
+
def set_custom_theme() -> None:
|
109 |
+
"""Apply custom Spotify-inspired theme to Streamlit UI."""
|
110 |
+
custom_theme = f"""
|
111 |
+
<style>
|
112 |
+
.stApp {{
|
113 |
+
background-color: {THEME_COLORS['background']};
|
114 |
+
color: {THEME_COLORS['text']};
|
115 |
+
}}
|
116 |
+
.css-18e3th9 {{
|
117 |
+
padding-top: 2rem;
|
118 |
+
padding-bottom: 10rem;
|
119 |
+
padding-left: 5rem;
|
120 |
+
padding-right: 5rem;
|
121 |
+
}}
|
122 |
+
h1, h2, h3, h4, h5, h6 {{
|
123 |
+
color: {THEME_COLORS['text']} !important;
|
124 |
+
font-weight: 700 !important;
|
125 |
+
}}
|
126 |
+
.stSidebar .sidebar-content {{
|
127 |
+
background-color: {THEME_COLORS['card_bg']};
|
128 |
+
}}
|
129 |
+
.stButton>button {{
|
130 |
+
background-color: {THEME_COLORS['primary']};
|
131 |
+
color: white;
|
132 |
+
border-radius: 500px;
|
133 |
+
padding: 8px 32px;
|
134 |
+
font-weight: 600;
|
135 |
+
border: none;
|
136 |
+
transition: all 0.3s ease;
|
137 |
+
}}
|
138 |
+
.stButton>button:hover {{
|
139 |
+
background-color: {THEME_COLORS['secondary']};
|
140 |
+
transform: scale(1.04);
|
141 |
+
}}
|
142 |
+
</style>
|
143 |
+
"""
|
144 |
+
st.markdown(custom_theme, unsafe_allow_html=True)
|
145 |
+
|
146 |
+
|
147 |
+
def process_youtube(url: str) -> Tuple[Optional[str], Optional[str]]:
|
148 |
+
"""Process a YouTube URL and extract audio.
|
149 |
+
|
150 |
+
Args:
|
151 |
+
url: YouTube URL
|
152 |
+
|
153 |
+
Returns:
|
154 |
+
Tuple of (audio_path, video_name)
|
155 |
+
"""
|
156 |
+
try:
|
157 |
+
with st.spinner('Downloading audio from YouTube...'):
|
158 |
+
audio_path, video_name = extract_audio(url)
|
159 |
+
return audio_path, video_name
|
160 |
+
except Exception as e:
|
161 |
+
st.error(f"Error processing YouTube URL: {e}")
|
162 |
+
logger.error(f"Error processing YouTube URL: {e}", exc_info=True)
|
163 |
+
return None, None
|
164 |
+
|
165 |
+
|
166 |
+
def process_uploaded_file(uploaded_file) -> Tuple[Optional[str], Optional[str]]:
|
167 |
+
"""Process an uploaded audio file.
|
168 |
+
|
169 |
+
Args:
|
170 |
+
uploaded_file: Streamlit UploadedFile object
|
171 |
+
|
172 |
+
Returns:
|
173 |
+
Tuple of (audio_path, file_name)
|
174 |
+
"""
|
175 |
+
try:
|
176 |
+
with st.spinner('Processing uploaded file...'):
|
177 |
+
# Save the uploaded file to a temporary location
|
178 |
+
temp_dir = tempfile.mkdtemp()
|
179 |
+
file_name = uploaded_file.name
|
180 |
+
temp_path = os.path.join(temp_dir, file_name)
|
181 |
+
|
182 |
+
with open(temp_path, 'wb') as f:
|
183 |
+
f.write(uploaded_file.getbuffer())
|
184 |
+
|
185 |
+
return temp_path, file_name.split('.')[0]
|
186 |
+
except Exception as e:
|
187 |
+
st.error(f"Error processing uploaded file: {e}")
|
188 |
+
logger.error(f"Error processing uploaded file: {e}", exc_info=True)
|
189 |
+
return None, None
|
190 |
+
|
191 |
+
|
192 |
+
def extract_chorus_segments(y: np.ndarray, sr: int, smoothed_predictions: np.ndarray,
|
193 |
+
meter_grid_times: np.ndarray) -> List[Tuple[float, float, np.ndarray]]:
|
194 |
+
"""Extract chorus segments from predictions.
|
195 |
+
|
196 |
+
Args:
|
197 |
+
y: Audio data
|
198 |
+
sr: Sample rate
|
199 |
+
smoothed_predictions: Smoothed model predictions
|
200 |
+
meter_grid_times: Time grid for predictions
|
201 |
+
|
202 |
+
Returns:
|
203 |
+
List of (start_time, end_time, audio_segment) tuples
|
204 |
+
"""
|
205 |
+
# Define threshold for chorus detection (probability > 0.5)
|
206 |
+
threshold = 0.5
|
207 |
+
|
208 |
+
# Find the segments where the predictions are above the threshold
|
209 |
+
chorus_mask = smoothed_predictions > threshold
|
210 |
+
|
211 |
+
# Group consecutive True values to identify segments
|
212 |
+
segments = []
|
213 |
+
current_segment = None
|
214 |
+
|
215 |
+
for i, is_chorus in enumerate(chorus_mask):
|
216 |
+
time = meter_grid_times[i]
|
217 |
+
|
218 |
+
if is_chorus and current_segment is None:
|
219 |
+
# Start a new segment
|
220 |
+
current_segment = (time, None, None)
|
221 |
+
elif not is_chorus and current_segment is not None:
|
222 |
+
# End the current segment
|
223 |
+
start_time = current_segment[0]
|
224 |
+
current_segment = (start_time, time, None)
|
225 |
+
segments.append(current_segment)
|
226 |
+
current_segment = None
|
227 |
+
|
228 |
+
# Handle the case where the last segment extends to the end of the song
|
229 |
+
if current_segment is not None:
|
230 |
+
start_time = current_segment[0]
|
231 |
+
segments.append((start_time, meter_grid_times[-1], None))
|
232 |
+
|
233 |
+
# Extract the actual audio for each segment
|
234 |
+
segments_with_audio = []
|
235 |
+
for start_time, end_time, _ in segments:
|
236 |
+
# Convert times to sample indices
|
237 |
+
start_idx = int(start_time * sr)
|
238 |
+
end_idx = int(end_time * sr)
|
239 |
+
|
240 |
+
# Extract the audio segment
|
241 |
+
segment_audio = y[start_idx:end_idx]
|
242 |
+
|
243 |
+
segments_with_audio.append((start_time, end_time, segment_audio))
|
244 |
+
|
245 |
+
return segments_with_audio
|
246 |
+
|
247 |
+
|
248 |
+
def create_chorus_compilation(segments: List[Tuple[float, float, np.ndarray]],
|
249 |
+
sr: int, fade_duration: float = 0.3) -> Tuple[np.ndarray, str]:
|
250 |
+
"""Create a compilation of chorus segments.
|
251 |
+
|
252 |
+
Args:
|
253 |
+
segments: List of (start_time, end_time, audio_data) tuples
|
254 |
+
sr: Sample rate
|
255 |
+
fade_duration: Duration of fade in/out in seconds
|
256 |
+
|
257 |
+
Returns:
|
258 |
+
Tuple of (compilation_audio, description)
|
259 |
+
"""
|
260 |
+
if not segments:
|
261 |
+
return np.array([]), "No chorus segments found"
|
262 |
+
|
263 |
+
# Calculate the number of samples for fading
|
264 |
+
fade_samples = int(fade_duration * sr)
|
265 |
+
|
266 |
+
# Prepare a list to store the processed segments
|
267 |
+
processed_segments = []
|
268 |
+
|
269 |
+
# Description of segments
|
270 |
+
segment_descriptions = []
|
271 |
+
|
272 |
+
# Process each segment
|
273 |
+
for i, (start_time, end_time, audio) in enumerate(segments):
|
274 |
+
# Apply fade in and fade out
|
275 |
+
segment_length = len(audio)
|
276 |
+
|
277 |
+
if segment_length <= 2 * fade_samples:
|
278 |
+
# Segment is too short for fading, skip it
|
279 |
+
continue
|
280 |
+
|
281 |
+
# Create a linear fade in and fade out
|
282 |
+
fade_in = np.linspace(0, 1, fade_samples)
|
283 |
+
fade_out = np.linspace(1, 0, fade_samples)
|
284 |
+
|
285 |
+
# Apply the fades
|
286 |
+
audio_faded = audio.copy()
|
287 |
+
audio_faded[:fade_samples] *= fade_in
|
288 |
+
audio_faded[-fade_samples:] *= fade_out
|
289 |
+
|
290 |
+
processed_segments.append(audio_faded)
|
291 |
+
|
292 |
+
# Format the times for the description
|
293 |
+
start_fmt = format_time(start_time)
|
294 |
+
end_fmt = format_time(end_time)
|
295 |
+
segment_descriptions.append(f"Chorus {i+1}: {start_fmt} - {end_fmt}")
|
296 |
+
|
297 |
+
if not processed_segments:
|
298 |
+
return np.array([]), "No chorus segments long enough for compilation"
|
299 |
+
|
300 |
+
# Concatenate all the processed segments
|
301 |
+
compilation = np.concatenate(processed_segments)
|
302 |
+
|
303 |
+
# Join the descriptions
|
304 |
+
description = "\n".join(segment_descriptions)
|
305 |
+
|
306 |
+
return compilation, description
|
307 |
+
|
308 |
+
|
309 |
+
def save_audio_for_streamlit(audio_data: np.ndarray, sr: int, file_format: str = 'mp3') -> bytes:
|
310 |
+
"""Save audio data to a format suitable for Streamlit audio playback.
|
311 |
+
|
312 |
+
Args:
|
313 |
+
audio_data: Audio samples
|
314 |
+
sr: Sample rate
|
315 |
+
file_format: Output format ('mp3', 'wav', etc.)
|
316 |
+
|
317 |
+
Returns:
|
318 |
+
Audio bytes
|
319 |
+
"""
|
320 |
+
with io.BytesIO() as buffer:
|
321 |
+
sf.write(buffer, audio_data, sr, format=file_format)
|
322 |
+
buffer.seek(0)
|
323 |
+
return buffer.read()
|
324 |
+
|
325 |
+
|
326 |
+
def format_time(seconds: float) -> str:
|
327 |
+
"""Format seconds as MM:SS.
|
328 |
+
|
329 |
+
Args:
|
330 |
+
seconds: Time in seconds
|
331 |
+
|
332 |
+
Returns:
|
333 |
+
Formatted time string
|
334 |
+
"""
|
335 |
+
minutes = int(seconds // 60)
|
336 |
+
seconds = int(seconds % 60)
|
337 |
+
return f"{minutes:02d}:{seconds:02d}"
|
338 |
+
|
339 |
+
|
340 |
+
def main() -> None:
|
341 |
+
"""Main function for the Streamlit app."""
|
342 |
+
# Set page config
|
343 |
+
st.set_page_config(
|
344 |
+
page_title="Chorus Detection",
|
345 |
+
page_icon="🎵",
|
346 |
+
layout="wide",
|
347 |
+
initial_sidebar_state="collapsed",
|
348 |
+
)
|
349 |
+
|
350 |
+
# Apply custom theme
|
351 |
+
set_custom_theme()
|
352 |
+
|
353 |
+
# App title and description
|
354 |
+
st.title("Chorus Detection")
|
355 |
+
st.markdown("""
|
356 |
+
<div class="subheader">
|
357 |
+
Upload a song or enter a YouTube URL to automatically detect chorus sections using AI
|
358 |
+
</div>
|
359 |
+
""", unsafe_allow_html=True)
|
360 |
+
|
361 |
+
# User input section
|
362 |
+
col1, col2 = st.columns(2)
|
363 |
+
|
364 |
+
with col1:
|
365 |
+
st.markdown('<div class="input-option">', unsafe_allow_html=True)
|
366 |
+
st.subheader("Option 1: Upload an audio file")
|
367 |
+
uploaded_file = st.file_uploader("Choose an audio file", type=['mp3', 'wav', 'ogg', 'flac', 'm4a'])
|
368 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
369 |
+
|
370 |
+
with col2:
|
371 |
+
st.markdown('<div class="input-option">', unsafe_allow_html=True)
|
372 |
+
st.subheader("Option 2: YouTube URL")
|
373 |
+
youtube_url = st.text_input("Enter a YouTube URL", placeholder="https://www.youtube.com/watch?v=...")
|
374 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
375 |
+
|
376 |
+
# Process button
|
377 |
+
if st.button("Analyze"):
|
378 |
+
# Check the input method
|
379 |
+
audio_path = None
|
380 |
+
file_name = None
|
381 |
+
|
382 |
+
if uploaded_file is not None:
|
383 |
+
audio_path, file_name = process_uploaded_file(uploaded_file)
|
384 |
+
elif youtube_url:
|
385 |
+
if is_youtube_url(youtube_url):
|
386 |
+
audio_path, file_name = process_youtube(youtube_url)
|
387 |
+
else:
|
388 |
+
st.error("Invalid YouTube URL. Please enter a valid YouTube URL.")
|
389 |
+
else:
|
390 |
+
st.error("Please upload an audio file or enter a YouTube URL.")
|
391 |
+
|
392 |
+
# If we have a valid audio path, process it
|
393 |
+
if audio_path and file_name:
|
394 |
+
try:
|
395 |
+
# Load and process the audio file
|
396 |
+
with st.spinner('Processing audio...'):
|
397 |
+
# Load audio and extract features
|
398 |
+
y, sr = librosa.load(audio_path, sr=22050)
|
399 |
+
|
400 |
+
# Create a temporary directory for model output
|
401 |
+
temp_output_dir = tempfile.mkdtemp()
|
402 |
+
|
403 |
+
# Load the model
|
404 |
+
model = load_CRNN_model(MODEL_PATH)
|
405 |
+
|
406 |
+
# Process audio and make predictions
|
407 |
+
audio_features, _ = process_audio(audio_path, output_path=temp_output_dir)
|
408 |
+
meter_grid_times, predictions = make_predictions(model, audio_features)
|
409 |
+
|
410 |
+
# Smooth predictions to avoid rapid transitions
|
411 |
+
smoothed_predictions = np.convolve(predictions,
|
412 |
+
np.ones(5)/5,
|
413 |
+
mode='same')
|
414 |
+
|
415 |
+
# Extract chorus segments
|
416 |
+
chorus_segments = extract_chorus_segments(y, sr, smoothed_predictions, meter_grid_times)
|
417 |
+
|
418 |
+
# Create a chorus compilation
|
419 |
+
compilation_audio, segments_desc = create_chorus_compilation(chorus_segments, sr)
|
420 |
+
|
421 |
+
# Display results
|
422 |
+
st.markdown(f"""
|
423 |
+
<div class="result-container">
|
424 |
+
<div class="song-title">{file_name}</div>
|
425 |
+
</div>
|
426 |
+
""", unsafe_allow_html=True)
|
427 |
+
|
428 |
+
# Display waveform with highlighted chorus sections
|
429 |
+
fig, ax = plt.subplots(figsize=(14, 5))
|
430 |
+
|
431 |
+
# Plot the waveform
|
432 |
+
times = np.linspace(0, len(y)/sr, len(y))
|
433 |
+
ax.plot(times, y, color='#b3b3b3', alpha=0.5, linewidth=1)
|
434 |
+
ax.set_xlabel('Time (s)')
|
435 |
+
ax.set_ylabel('Amplitude')
|
436 |
+
ax.set_title('Audio Waveform with Chorus Sections Highlighted')
|
437 |
+
|
438 |
+
# Highlight chorus sections
|
439 |
+
for start_time, end_time, _ in chorus_segments:
|
440 |
+
ax.axvspan(start_time, end_time, alpha=0.3, color=THEME_COLORS['primary'])
|
441 |
+
|
442 |
+
# Add a label at the start of each chorus
|
443 |
+
ax.annotate('Chorus',
|
444 |
+
xy=(start_time, 0.8 * max(y)),
|
445 |
+
xytext=(start_time + 0.5, 0.9 * max(y)),
|
446 |
+
color=THEME_COLORS['primary'],
|
447 |
+
weight='bold')
|
448 |
+
|
449 |
+
# Customize plot appearance
|
450 |
+
ax.set_facecolor(THEME_COLORS['card_bg'])
|
451 |
+
fig.patch.set_facecolor(THEME_COLORS['background'])
|
452 |
+
ax.spines['top'].set_visible(False)
|
453 |
+
ax.spines['right'].set_visible(False)
|
454 |
+
ax.spines['bottom'].set_color(THEME_COLORS['border'])
|
455 |
+
ax.spines['left'].set_color(THEME_COLORS['border'])
|
456 |
+
ax.tick_params(axis='x', colors=THEME_COLORS['text'])
|
457 |
+
ax.tick_params(axis='y', colors=THEME_COLORS['text'])
|
458 |
+
ax.xaxis.label.set_color(THEME_COLORS['text'])
|
459 |
+
ax.yaxis.label.set_color(THEME_COLORS['text'])
|
460 |
+
ax.title.set_color(THEME_COLORS['text'])
|
461 |
+
|
462 |
+
st.pyplot(fig)
|
463 |
+
|
464 |
+
# Display chorus segments
|
465 |
+
if chorus_segments:
|
466 |
+
st.markdown('<div class="chorus-card">', unsafe_allow_html=True)
|
467 |
+
st.subheader("Chorus Segments")
|
468 |
+
for i, (start_time, end_time, segment_audio) in enumerate(chorus_segments):
|
469 |
+
st.markdown(f"""
|
470 |
+
<div class="time-stamp">Chorus {i+1}: {format_time(start_time)} - {format_time(end_time)}</div>
|
471 |
+
""", unsafe_allow_html=True)
|
472 |
+
|
473 |
+
# Convert segment audio to bytes for playback
|
474 |
+
audio_bytes = save_audio_for_streamlit(segment_audio, sr)
|
475 |
+
st.audio(audio_bytes, format='audio/mp3')
|
476 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
477 |
+
|
478 |
+
# Chorus compilation
|
479 |
+
if len(compilation_audio) > 0:
|
480 |
+
st.markdown('<div class="chorus-card">', unsafe_allow_html=True)
|
481 |
+
st.subheader("Chorus Compilation")
|
482 |
+
st.markdown("All chorus segments combined into one track:")
|
483 |
+
|
484 |
+
compilation_bytes = save_audio_for_streamlit(compilation_audio, sr)
|
485 |
+
st.audio(compilation_bytes, format='audio/mp3')
|
486 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
487 |
+
else:
|
488 |
+
st.info("No chorus sections detected in this audio.")
|
489 |
+
|
490 |
+
except Exception as e:
|
491 |
+
st.error(f"Error processing audio: {e}")
|
492 |
+
logger.error(f"Error processing audio: {e}", exc_info=True)
|
493 |
+
|
494 |
+
if __name__ == "__main__":
|
495 |
+
main()
|