Spaces:
Running
Running
Commit
·
cb26165
1
Parent(s):
da764f1
Configure containerized Streamlit app for HF Spaces
Browse files- .space/app-entrypoint.sh +0 -0
- .space/config.json +23 -3
- Dockerfile +38 -0
- README_HF.md +30 -0
- app.py +36 -642
- src +142 -0
.space/app-entrypoint.sh
CHANGED
Binary files a/.space/app-entrypoint.sh and b/.space/app-entrypoint.sh differ
|
|
.space/config.json
CHANGED
@@ -1,11 +1,31 @@
|
|
1 |
{
|
2 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
"docker_build_args": {
|
4 |
"MODEL_HF_REPO": "dennisvdang/chorus-detection"
|
5 |
},
|
6 |
"sdk": "streamlit",
|
7 |
"python_requirements": "requirements.txt",
|
8 |
"suggested_hardware": "t4-small",
|
9 |
-
"suggested_cuda": "11.8"
|
10 |
-
"app_entrypoint": ".space/app-entrypoint.sh"
|
11 |
}
|
|
|
1 |
{
|
2 |
+
"docker": {
|
3 |
+
"image": "Dockerfile",
|
4 |
+
"env": {
|
5 |
+
"PYTHONPATH": "$PYTHONPATH:/app:/app/src",
|
6 |
+
"MODEL_REVISION": "20e66eb3d0788373c3bdc5b28fa2f2587b0e475f3bbc47e8ab9ff0dbdbb2df32",
|
7 |
+
"MODEL_HF_REPO": "dennisvdang/chorus-detection",
|
8 |
+
"HF_MODEL_FILENAME": "chorus_detection_crnn.h5"
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"runtime": {
|
12 |
+
"storage": {
|
13 |
+
"models": {
|
14 |
+
"writable": true,
|
15 |
+
"mount": true
|
16 |
+
}
|
17 |
+
}
|
18 |
+
},
|
19 |
+
"app": {
|
20 |
+
"port": 7860,
|
21 |
+
"entrypoint": ".space/app-entrypoint.sh"
|
22 |
+
},
|
23 |
+
"app_file": "app.py",
|
24 |
"docker_build_args": {
|
25 |
"MODEL_HF_REPO": "dennisvdang/chorus-detection"
|
26 |
},
|
27 |
"sdk": "streamlit",
|
28 |
"python_requirements": "requirements.txt",
|
29 |
"suggested_hardware": "t4-small",
|
30 |
+
"suggested_cuda": "11.8"
|
|
|
31 |
}
|
Dockerfile
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9-slim
|
2 |
+
|
3 |
+
# Set environment variables
|
4 |
+
ENV PYTHONDONTWRITEBYTECODE=1
|
5 |
+
ENV PYTHONUNBUFFERED=1
|
6 |
+
ENV PYTHONPATH="${PYTHONPATH}:/app:/app/src"
|
7 |
+
ENV MODEL_REVISION="20e66eb3d0788373c3bdc5b28fa2f2587b0e475f3bbc47e8ab9ff0dbdbb2df32"
|
8 |
+
ENV MODEL_HF_REPO="dennisvdang/chorus-detection"
|
9 |
+
ENV HF_MODEL_FILENAME="chorus_detection_crnn.h5"
|
10 |
+
|
11 |
+
# Set work directory
|
12 |
+
WORKDIR /app
|
13 |
+
|
14 |
+
# Install system dependencies
|
15 |
+
RUN apt-get update && apt-get install -y ffmpeg && rm -rf /var/lib/apt/lists/*
|
16 |
+
|
17 |
+
# Install Python dependencies
|
18 |
+
COPY requirements.txt .
|
19 |
+
RUN pip install --upgrade pip && pip install -r requirements.txt
|
20 |
+
|
21 |
+
# Copy app files
|
22 |
+
COPY . .
|
23 |
+
|
24 |
+
# Install package in development mode
|
25 |
+
RUN pip install -e .
|
26 |
+
|
27 |
+
# Make the entry point script executable
|
28 |
+
RUN if [ -f .space/app-entrypoint.sh ]; then chmod +x .space/app-entrypoint.sh; fi
|
29 |
+
|
30 |
+
# Ensure model exists
|
31 |
+
RUN python -c "from src.download_model import ensure_model_exists; ensure_model_exists(revision='${MODEL_REVISION}')"
|
32 |
+
|
33 |
+
# Expose port for Streamlit
|
34 |
+
EXPOSE 7860
|
35 |
+
|
36 |
+
# Run the app
|
37 |
+
CMD ["streamlit", "run", "app.py", "--server.port=7860", "--server.address=0.0.0.0"]
|
38 |
+
|
README_HF.md
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Chorus Detection
|
2 |
+
|
3 |
+
This app automatically finds the chorus sections in songs using machine learning.
|
4 |
+
|
5 |
+
## How to Use
|
6 |
+
|
7 |
+
1. **Upload a song** or **enter a YouTube URL**
|
8 |
+
2. Click **Analyze**
|
9 |
+
3. The app will:
|
10 |
+
- Process the audio
|
11 |
+
- Detect chorus sections
|
12 |
+
- Generate a visualization
|
13 |
+
- Create a chorus compilation
|
14 |
+
|
15 |
+
## Technical Details
|
16 |
+
|
17 |
+
- Uses a CRNN (Convolutional Recurrent Neural Network) model
|
18 |
+
- Trained on a dataset of manually labeled chorus sections
|
19 |
+
- Model ID: `dennisvdang/chorus-detection`
|
20 |
+
- Processes audio in real-time using TensorFlow
|
21 |
+
|
22 |
+
## Features
|
23 |
+
|
24 |
+
- Chorus detection in any music track
|
25 |
+
- Audio visualization with highlighted chorus sections
|
26 |
+
|
27 |
+
|
28 |
+
## Contact
|
29 |
+
|
30 |
+
Created by [Dennis Dang](https://huggingface.co/dennisvdang). For more details, check out the [GitHub repository](https://github.com/dennisvdang/chorus-detection).
|
app.py
CHANGED
@@ -1,653 +1,47 @@
|
|
1 |
#!/usr/bin/env python3
|
2 |
# -*- coding: utf-8 -*-
|
3 |
|
4 |
-
"""
|
5 |
-
|
6 |
-
This
|
7 |
-
allowing users to upload audio files or provide YouTube URLs for analysis.
|
8 |
"""
|
9 |
|
10 |
import os
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
try:
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
import tempfile
|
22 |
-
import warnings
|
23 |
-
from typing import Optional, Tuple, List
|
24 |
-
import time
|
25 |
-
import io
|
26 |
-
|
27 |
-
import matplotlib.pyplot as plt
|
28 |
-
import streamlit as st
|
29 |
-
import tensorflow as tf
|
30 |
-
import librosa
|
31 |
-
import soundfile as sf
|
32 |
-
import numpy as np
|
33 |
-
from pydub import AudioSegment
|
34 |
-
|
35 |
-
# Suppress warnings
|
36 |
-
warnings.filterwarnings("ignore") # Suppress all warnings
|
37 |
-
tf.get_logger().setLevel('ERROR') # Suppress TensorFlow ERROR logs
|
38 |
-
|
39 |
-
from chorus_detection.audio.data_processing import process_audio
|
40 |
-
from chorus_detection.audio.processor import extract_audio
|
41 |
-
from chorus_detection.config import MODEL_PATH
|
42 |
-
from chorus_detection.models.crnn import load_CRNN_model, make_predictions
|
43 |
-
from chorus_detection.utils.cli import is_youtube_url
|
44 |
-
from chorus_detection.utils.logging import logger
|
45 |
-
|
46 |
-
# Ensure the model is downloaded before proceeding
|
47 |
-
MODEL_PATH = ensure_model_exists()
|
48 |
-
|
49 |
-
# Define color scheme
|
50 |
-
THEME_COLORS = {
|
51 |
-
'background': '#121212',
|
52 |
-
'card_bg': '#181818',
|
53 |
-
'primary': '#1DB954',
|
54 |
-
'secondary': '#1ED760',
|
55 |
-
'text': '#FFFFFF',
|
56 |
-
'subtext': '#B3B3B3',
|
57 |
-
'highlight': '#1DB954',
|
58 |
-
'border': '#333333',
|
59 |
-
}
|
60 |
-
|
61 |
-
|
62 |
-
def get_binary_file_downloader_html(bin_file: str, file_label: str = 'File') -> str:
|
63 |
-
"""Generate HTML for file download link.
|
64 |
-
|
65 |
-
Args:
|
66 |
-
bin_file: Path to the binary file
|
67 |
-
file_label: Label for the download link
|
68 |
-
|
69 |
-
Returns:
|
70 |
-
HTML string for the download link
|
71 |
-
"""
|
72 |
-
with open(bin_file, 'rb') as f:
|
73 |
-
data = f.read()
|
74 |
-
b64 = base64.b64encode(data).decode()
|
75 |
-
return f'<a href="data:application/octet-stream;base64,{b64}" download="{os.path.basename(bin_file)}">{file_label}</a>'
|
76 |
-
|
77 |
-
|
78 |
-
def set_custom_theme() -> None:
|
79 |
-
"""Apply custom Spotify-inspired theme to Streamlit UI."""
|
80 |
-
custom_theme = f"""
|
81 |
-
<style>
|
82 |
-
.stApp {{
|
83 |
-
background-color: {THEME_COLORS['background']};
|
84 |
-
color: {THEME_COLORS['text']};
|
85 |
-
}}
|
86 |
-
.css-18e3th9 {{
|
87 |
-
padding-top: 2rem;
|
88 |
-
padding-bottom: 10rem;
|
89 |
-
padding-left: 5rem;
|
90 |
-
padding-right: 5rem;
|
91 |
-
}}
|
92 |
-
h1, h2, h3, h4, h5, h6 {{
|
93 |
-
color: {THEME_COLORS['text']} !important;
|
94 |
-
font-weight: 700 !important;
|
95 |
-
}}
|
96 |
-
.stSidebar .sidebar-content {{
|
97 |
-
background-color: {THEME_COLORS['card_bg']};
|
98 |
-
}}
|
99 |
-
.stButton>button {{
|
100 |
-
background-color: {THEME_COLORS['primary']};
|
101 |
-
color: white;
|
102 |
-
border-radius: 500px;
|
103 |
-
padding: 8px 32px;
|
104 |
-
font-weight: 600;
|
105 |
-
border: none;
|
106 |
-
transition: all 0.3s ease;
|
107 |
-
}}
|
108 |
-
.stButton>button:hover {{
|
109 |
-
background-color: {THEME_COLORS['secondary']};
|
110 |
-
transform: scale(1.04);
|
111 |
-
}}
|
112 |
-
.stTextInput>div>div>input,
|
113 |
-
.stFileUploader>div>div {{
|
114 |
-
background-color: {THEME_COLORS['card_bg']};
|
115 |
-
color: {THEME_COLORS['text']};
|
116 |
-
border: 1px solid {THEME_COLORS['border']};
|
117 |
-
border-radius: 4px;
|
118 |
-
}}
|
119 |
-
.stExpander {{
|
120 |
-
background-color: {THEME_COLORS['card_bg']};
|
121 |
-
border-radius: 8px;
|
122 |
-
margin-bottom: 10px;
|
123 |
-
border: 1px solid {THEME_COLORS['border']};
|
124 |
-
}}
|
125 |
-
.stExpander>div {{
|
126 |
-
border: none !important;
|
127 |
-
}}
|
128 |
-
.chorus-card {{
|
129 |
-
background-color: {THEME_COLORS['card_bg']};
|
130 |
-
border-radius: 8px;
|
131 |
-
padding: 20px;
|
132 |
-
margin-bottom: 15px;
|
133 |
-
border: 1px solid {THEME_COLORS['border']};
|
134 |
-
}}
|
135 |
-
.result-container {{
|
136 |
-
padding: 20px;
|
137 |
-
border-radius: 8px;
|
138 |
-
background-color: {THEME_COLORS['card_bg']};
|
139 |
-
margin-bottom: 20px;
|
140 |
-
border: 1px solid {THEME_COLORS['border']};
|
141 |
-
}}
|
142 |
-
.song-title {{
|
143 |
-
font-size: 24px;
|
144 |
-
font-weight: 700;
|
145 |
-
color: {THEME_COLORS['text']};
|
146 |
-
margin-bottom: 10px;
|
147 |
-
}}
|
148 |
-
.time-stamp {{
|
149 |
-
color: {THEME_COLORS['primary']};
|
150 |
-
font-weight: 600;
|
151 |
-
}}
|
152 |
-
audio {{
|
153 |
-
width: 100%;
|
154 |
-
border-radius: 500px;
|
155 |
-
margin-top: 10px;
|
156 |
-
}}
|
157 |
-
.stAlert {{
|
158 |
-
background-color: {THEME_COLORS['card_bg']};
|
159 |
-
color: {THEME_COLORS['text']};
|
160 |
-
border: 1px solid {THEME_COLORS['border']};
|
161 |
-
}}
|
162 |
-
.stRadio > div {{
|
163 |
-
gap: 1rem;
|
164 |
-
}}
|
165 |
-
.stRadio label {{
|
166 |
-
background-color: {THEME_COLORS['card_bg']};
|
167 |
-
padding: 10px 20px;
|
168 |
-
border-radius: 500px;
|
169 |
-
margin-right: 10px;
|
170 |
-
border: 1px solid {THEME_COLORS['border']};
|
171 |
-
}}
|
172 |
-
.stRadio label:hover {{
|
173 |
-
border-color: {THEME_COLORS['primary']};
|
174 |
-
}}
|
175 |
-
.stRadio [data-baseweb="radio"] {{
|
176 |
-
margin-right: 20px;
|
177 |
-
}}
|
178 |
-
.subheader {{
|
179 |
-
color: {THEME_COLORS['subtext']};
|
180 |
-
font-size: 14px;
|
181 |
-
margin-bottom: 20px;
|
182 |
-
}}
|
183 |
-
.input-option {{
|
184 |
-
background-color: {THEME_COLORS['card_bg']};
|
185 |
-
border-radius: 10px;
|
186 |
-
padding: 25px;
|
187 |
-
margin-bottom: 20px;
|
188 |
-
border: 1px solid {THEME_COLORS['border']};
|
189 |
-
}}
|
190 |
-
.or-divider {{
|
191 |
-
text-align: center;
|
192 |
-
font-size: 18px;
|
193 |
-
font-weight: 600;
|
194 |
-
color: {THEME_COLORS['text']};
|
195 |
-
margin: 20px 0;
|
196 |
-
position: relative;
|
197 |
-
}}
|
198 |
-
.or-divider:before, .or-divider:after {{
|
199 |
-
content: "";
|
200 |
-
display: inline-block;
|
201 |
-
width: 40%;
|
202 |
-
margin: 0 10px;
|
203 |
-
vertical-align: middle;
|
204 |
-
border-top: 1px solid {THEME_COLORS['border']};
|
205 |
-
}}
|
206 |
-
</style>
|
207 |
-
"""
|
208 |
-
st.markdown(custom_theme, unsafe_allow_html=True)
|
209 |
-
|
210 |
-
|
211 |
-
def process_youtube(url: str) -> Tuple[Optional[str], Optional[str]]:
|
212 |
-
"""Process a YouTube URL and extract audio.
|
213 |
-
|
214 |
-
Args:
|
215 |
-
url: YouTube URL to process
|
216 |
-
|
217 |
-
Returns:
|
218 |
-
Tuple containing the path to the extracted audio file and the video title
|
219 |
-
"""
|
220 |
-
progress_bar = st.progress(0)
|
221 |
-
status_text = st.empty()
|
222 |
-
|
223 |
-
try:
|
224 |
-
status_text.text("Getting video information...")
|
225 |
-
progress_bar.progress(10)
|
226 |
-
|
227 |
-
status_text.text("Downloading audio from YouTube...")
|
228 |
-
progress_bar.progress(30)
|
229 |
-
|
230 |
-
# Use yt-dlp to download the video
|
231 |
-
audio_path, video_name = extract_audio(url)
|
232 |
-
|
233 |
-
if not audio_path:
|
234 |
-
status_text.text("Download failed.")
|
235 |
-
progress_bar.progress(100)
|
236 |
-
|
237 |
-
st.error("Failed to extract audio from the provided URL.")
|
238 |
-
st.info("Try downloading the video manually and uploading it instead.")
|
239 |
-
return None, None
|
240 |
-
|
241 |
-
progress_bar.progress(90)
|
242 |
-
status_text.text(f"Successfully downloaded '{video_name}'")
|
243 |
-
progress_bar.progress(100)
|
244 |
-
return audio_path, video_name
|
245 |
-
|
246 |
-
except Exception as e:
|
247 |
-
import traceback
|
248 |
-
progress_bar.progress(100)
|
249 |
-
status_text.text("Download failed with an error.")
|
250 |
-
st.error(f"Failed to extract audio: {str(e)}")
|
251 |
-
st.code(traceback.format_exc())
|
252 |
-
return None, None
|
253 |
-
|
254 |
-
|
255 |
-
def process_uploaded_file(uploaded_file) -> Tuple[Optional[str], Optional[str]]:
|
256 |
-
"""Process an uploaded audio file.
|
257 |
-
|
258 |
-
Args:
|
259 |
-
uploaded_file: File uploaded through Streamlit
|
260 |
-
|
261 |
-
Returns:
|
262 |
-
Tuple containing the path to the saved file and the file name
|
263 |
-
"""
|
264 |
-
try:
|
265 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp3') as tmp:
|
266 |
-
tmp.write(uploaded_file.getvalue())
|
267 |
-
audio_path = tmp.name
|
268 |
-
return audio_path, uploaded_file.name
|
269 |
-
except Exception as e:
|
270 |
-
st.error(f"Error processing uploaded file: {e}")
|
271 |
-
return None, None
|
272 |
-
|
273 |
-
|
274 |
-
def extract_chorus_segments(y: np.ndarray, sr: int, smoothed_predictions: np.ndarray,
|
275 |
-
meter_grid_times: np.ndarray) -> List[Tuple[float, float, np.ndarray]]:
|
276 |
-
"""Extract chorus segments from the audio array with 1 second before each chorus.
|
277 |
-
|
278 |
-
Args:
|
279 |
-
y: Audio array
|
280 |
-
sr: Sample rate
|
281 |
-
smoothed_predictions: Array of binary predictions
|
282 |
-
meter_grid_times: Array of meter grid times
|
283 |
-
|
284 |
-
Returns:
|
285 |
-
List of tuples (start_time, end_time, audio_segment)
|
286 |
-
"""
|
287 |
-
# Find continuous chorus segments
|
288 |
-
chorus_segments = []
|
289 |
-
start_idx = None
|
290 |
-
|
291 |
-
for i, pred in enumerate(smoothed_predictions):
|
292 |
-
if pred == 1 and (i == 0 or smoothed_predictions[i-1] == 0):
|
293 |
-
start_idx = i
|
294 |
-
elif pred == 0 and start_idx is not None:
|
295 |
-
# Found the end of a segment
|
296 |
-
start_time = meter_grid_times[start_idx]
|
297 |
-
end_time = meter_grid_times[i]
|
298 |
-
chorus_segments.append((start_idx, i, start_time, end_time))
|
299 |
-
start_idx = None
|
300 |
-
|
301 |
-
# Handle the case where the last segment extends to the end
|
302 |
-
if start_idx is not None:
|
303 |
-
start_time = meter_grid_times[start_idx]
|
304 |
-
end_time = meter_grid_times[-1] if len(meter_grid_times) > start_idx + 1 else len(y) / sr
|
305 |
-
chorus_segments.append((start_idx, len(smoothed_predictions), start_time, end_time))
|
306 |
-
|
307 |
-
# Extract the audio segments with 1 second before each chorus
|
308 |
-
extracted_segments = []
|
309 |
-
for _, _, start_time, end_time in chorus_segments:
|
310 |
-
# Add 1 second before the chorus starts
|
311 |
-
adjusted_start_time = max(0, start_time - 1.0)
|
312 |
-
# Convert times to samples
|
313 |
-
start_sample = int(adjusted_start_time * sr)
|
314 |
-
end_sample = min(len(y), int(end_time * sr))
|
315 |
-
# Extract the segment
|
316 |
-
segment = y[start_sample:end_sample]
|
317 |
-
extracted_segments.append((adjusted_start_time, end_time, segment))
|
318 |
-
|
319 |
-
return extracted_segments
|
320 |
-
|
321 |
-
|
322 |
-
def create_chorus_compilation(segments: List[Tuple[float, float, np.ndarray]],
|
323 |
-
sr: int, fade_duration: float = 0.3) -> Tuple[np.ndarray, str]:
|
324 |
-
"""Create a compilation of all chorus segments with fading between segments.
|
325 |
-
|
326 |
-
Args:
|
327 |
-
segments: List of tuples (start_time, end_time, audio_segment)
|
328 |
-
sr: Sample rate
|
329 |
-
fade_duration: Duration of fade in/out in seconds
|
330 |
-
|
331 |
-
Returns:
|
332 |
-
Tuple containing the compiled audio array and a string with timing info
|
333 |
-
"""
|
334 |
-
if not segments:
|
335 |
-
return np.array([]), ""
|
336 |
-
|
337 |
-
# Create a compilation of all segments
|
338 |
-
compilation = np.array([])
|
339 |
-
timing_info = ""
|
340 |
-
current_position = 0
|
341 |
-
|
342 |
-
for i, (start_time, end_time, segment) in enumerate(segments):
|
343 |
-
# Add 0.5 seconds of silence between segments
|
344 |
-
if i > 0:
|
345 |
-
silence_samples = int(0.5 * sr)
|
346 |
-
compilation = np.concatenate([compilation, np.zeros(silence_samples)])
|
347 |
-
current_position += 0.5
|
348 |
-
|
349 |
-
# Add segment info to timing
|
350 |
-
minutes_start = int(current_position // 60)
|
351 |
-
seconds_start = int(current_position % 60)
|
352 |
-
|
353 |
-
# Add the segment
|
354 |
-
compilation = np.concatenate([compilation, segment])
|
355 |
-
|
356 |
-
# Update current position
|
357 |
-
segment_duration = len(segment) / sr
|
358 |
-
current_position += segment_duration
|
359 |
-
|
360 |
-
minutes_end = int(current_position // 60)
|
361 |
-
seconds_end = int(current_position % 60)
|
362 |
-
|
363 |
-
# Original times in the song
|
364 |
-
orig_min_start = int(start_time // 60)
|
365 |
-
orig_sec_start = int(start_time % 60)
|
366 |
-
orig_min_end = int(end_time // 60)
|
367 |
-
orig_sec_end = int(end_time % 60)
|
368 |
-
|
369 |
-
# Add timing info
|
370 |
-
timing_info += f"Chorus {i+1}: {minutes_start}:{seconds_start:02d} - {minutes_end}:{seconds_end:02d} "
|
371 |
-
timing_info += f"(Original: {orig_min_start}:{orig_sec_start:02d} - {orig_min_end}:{orig_sec_end:02d})\n"
|
372 |
-
|
373 |
-
return compilation, timing_info
|
374 |
-
|
375 |
-
|
376 |
-
def save_audio_for_streamlit(audio_data: np.ndarray, sr: int, file_format: str = 'mp3') -> bytes:
|
377 |
-
"""Save audio data to a BytesIO object for use with st.audio.
|
378 |
-
|
379 |
-
Args:
|
380 |
-
audio_data: Audio array
|
381 |
-
sr: Sample rate
|
382 |
-
file_format: Audio file format
|
383 |
-
|
384 |
-
Returns:
|
385 |
-
BytesIO object containing the audio data
|
386 |
-
"""
|
387 |
-
buffer = io.BytesIO()
|
388 |
-
sf.write(buffer, audio_data, sr, format=file_format)
|
389 |
-
buffer.seek(0)
|
390 |
-
return buffer
|
391 |
-
|
392 |
-
|
393 |
-
def format_time(seconds: float) -> str:
|
394 |
-
"""Format time in seconds to MM:SS format.
|
395 |
-
|
396 |
-
Args:
|
397 |
-
seconds: Time in seconds
|
398 |
-
|
399 |
-
Returns:
|
400 |
-
Formatted time string
|
401 |
-
"""
|
402 |
-
minutes = int(seconds // 60)
|
403 |
-
secs = int(seconds % 60)
|
404 |
-
return f"{minutes}:{secs:02d}"
|
405 |
-
|
406 |
-
|
407 |
-
def create_waveform_visualization(audio_features, smoothed_predictions, meter_grid_times):
|
408 |
-
"""Create waveform visualization with highlighted chorus sections.
|
409 |
-
|
410 |
-
Args:
|
411 |
-
audio_features: Audio features
|
412 |
-
smoothed_predictions: Array of binary predictions
|
413 |
-
meter_grid_times: Array of meter grid times
|
414 |
-
|
415 |
-
Returns:
|
416 |
-
Matplotlib figure with visualization
|
417 |
-
"""
|
418 |
-
from chorus_detection.visualization.plotter import plot_meter_lines
|
419 |
-
|
420 |
-
# Set Matplotlib style to be dark and minimal
|
421 |
-
plt.style.use('dark_background')
|
422 |
-
|
423 |
-
fig, ax = plt.subplots(figsize=(12, 4), dpi=120)
|
424 |
-
|
425 |
-
# Display harmonic and percussive components
|
426 |
-
librosa.display.waveshow(audio_features.y_harm, sr=audio_features.sr,
|
427 |
-
alpha=0.8, ax=ax, color='#1DB954') # Primary color
|
428 |
-
librosa.display.waveshow(audio_features.y_perc, sr=audio_features.sr,
|
429 |
-
alpha=0.7, ax=ax, color='#B3B3B3') # Light gray
|
430 |
-
plot_meter_lines(ax, meter_grid_times)
|
431 |
-
|
432 |
-
# Highlight chorus sections
|
433 |
-
for i, prediction in enumerate(smoothed_predictions):
|
434 |
-
start_time = meter_grid_times[i]
|
435 |
-
end_time = meter_grid_times[i + 1] if i < len(
|
436 |
-
meter_grid_times) - 1 else len(audio_features.y) / audio_features.sr
|
437 |
-
if prediction == 1:
|
438 |
-
ax.axvspan(start_time, end_time, color='#1DB954', alpha=0.3,
|
439 |
-
label='Predicted Chorus' if i == 0 else None)
|
440 |
-
|
441 |
-
# Set plot limits and labels
|
442 |
-
ax.set_xlim([0, len(audio_features.y) / audio_features.sr])
|
443 |
-
ax.set_ylabel('Amplitude', color='#FFFFFF')
|
444 |
-
|
445 |
-
# Add legend
|
446 |
-
chorus_patch = plt.Rectangle((0, 0), 1, 1, fc='#1DB954', alpha=0.3)
|
447 |
-
handles, labels = ax.get_legend_handles_labels()
|
448 |
-
handles.append(chorus_patch)
|
449 |
-
labels.append('Chorus')
|
450 |
-
ax.legend(handles=handles, labels=labels)
|
451 |
-
|
452 |
-
# Set x-tick labels in minutes:seconds format
|
453 |
-
duration = len(audio_features.y) / audio_features.sr
|
454 |
-
xticks = [i for i in range(0, int(duration) + 10, 30)] # Every 30 seconds
|
455 |
-
xlabels = [f"{int(tick // 60)}:{int(tick % 60):02d}" for tick in xticks]
|
456 |
-
ax.set_xticks(xticks)
|
457 |
-
ax.set_xticklabels(xlabels, color='#FFFFFF')
|
458 |
-
ax.tick_params(axis='y', colors='#FFFFFF')
|
459 |
-
|
460 |
-
# Style the plot
|
461 |
-
ax.spines['top'].set_visible(False)
|
462 |
-
ax.spines['right'].set_visible(False)
|
463 |
-
ax.spines['bottom'].set_color('#333333')
|
464 |
-
ax.spines['left'].set_color('#333333')
|
465 |
-
ax.set_facecolor('#121212')
|
466 |
-
fig.patch.set_facecolor('#121212')
|
467 |
-
|
468 |
-
plt.tight_layout()
|
469 |
-
return fig
|
470 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
471 |
|
472 |
-
|
473 |
-
"""Analyze audio file and display predictions.
|
474 |
-
|
475 |
-
Args:
|
476 |
-
audio_path: Path to the audio file
|
477 |
-
video_name: Name of the video or audio file
|
478 |
-
model_path: Path to the model file
|
479 |
-
"""
|
480 |
try:
|
481 |
-
|
482 |
-
with st.spinner("Processing audio..."):
|
483 |
-
processed_audio, audio_features = process_audio(audio_path)
|
484 |
-
|
485 |
-
if processed_audio is None:
|
486 |
-
st.error("Failed to process audio. Please try a different file.")
|
487 |
-
return
|
488 |
-
|
489 |
-
# Load model
|
490 |
-
with st.spinner("Loading model..."):
|
491 |
-
model = load_CRNN_model(model_path=model_path)
|
492 |
-
|
493 |
-
# Make predictions
|
494 |
-
with st.spinner("Generating predictions..."):
|
495 |
-
smoothed_predictions = make_predictions(model, processed_audio, audio_features, None, None)
|
496 |
-
|
497 |
-
# Get chorus start times
|
498 |
-
meter_grid_times = librosa.frames_to_time(
|
499 |
-
audio_features.meter_grid, sr=audio_features.sr, hop_length=audio_features.hop_length)
|
500 |
-
chorus_start_times = [
|
501 |
-
meter_grid_times[i] for i in range(len(smoothed_predictions))
|
502 |
-
if smoothed_predictions[i] == 1 and (i == 0 or smoothed_predictions[i - 1] == 0)
|
503 |
-
]
|
504 |
-
|
505 |
-
# Extract chorus segments
|
506 |
-
chorus_segments = []
|
507 |
-
chorus_audio = None
|
508 |
-
|
509 |
-
if chorus_start_times:
|
510 |
-
with st.spinner("Extracting chorus segments..."):
|
511 |
-
chorus_segments = extract_chorus_segments(
|
512 |
-
audio_features.y, audio_features.sr, smoothed_predictions, meter_grid_times)
|
513 |
-
|
514 |
-
compilation, _ = create_chorus_compilation(
|
515 |
-
chorus_segments, audio_features.sr)
|
516 |
-
|
517 |
-
if len(compilation) > 0:
|
518 |
-
chorus_audio = save_audio_for_streamlit(compilation, audio_features.sr)
|
519 |
-
|
520 |
-
# Create waveform visualization
|
521 |
-
waveform_fig = create_waveform_visualization(audio_features, smoothed_predictions, meter_grid_times)
|
522 |
-
|
523 |
-
# Display results in custom-style container
|
524 |
-
st.markdown('<div class="result-container">', unsafe_allow_html=True)
|
525 |
-
st.subheader("Results")
|
526 |
-
st.markdown(f'<div class="song-title">{video_name}</div>', unsafe_allow_html=True)
|
527 |
-
|
528 |
-
# Display waveform
|
529 |
-
st.pyplot(waveform_fig)
|
530 |
-
|
531 |
-
if chorus_start_times:
|
532 |
-
# Create chorus compilation section
|
533 |
-
st.markdown("### Chorus Compilation")
|
534 |
-
st.markdown('<div class="subheader">All choruses with 1-second lead-in</div>', unsafe_allow_html=True)
|
535 |
-
st.audio(chorus_audio, format="audio/mp3")
|
536 |
-
|
537 |
-
# Display individual chorus segments
|
538 |
-
st.markdown("### Chorus Segments")
|
539 |
-
|
540 |
-
# Create columns for each chorus segment
|
541 |
-
for i, (start_time, end_time, segment) in enumerate(chorus_segments):
|
542 |
-
segment_audio = save_audio_for_streamlit(segment, audio_features.sr)
|
543 |
-
|
544 |
-
st.markdown(f"""
|
545 |
-
<div class="chorus-card">
|
546 |
-
<span style="font-weight: 700;">Chorus {i+1}:</span>
|
547 |
-
<span class="time-stamp">{format_time(start_time)} - {format_time(end_time)}</span>
|
548 |
-
</div>
|
549 |
-
""", unsafe_allow_html=True)
|
550 |
-
|
551 |
-
st.audio(segment_audio, format="audio/mp3")
|
552 |
-
else:
|
553 |
-
st.warning("No choruses were identified in this song.")
|
554 |
-
|
555 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
556 |
-
|
557 |
except Exception as e:
|
558 |
-
|
559 |
-
|
560 |
-
st.error(traceback.format_exc())
|
561 |
-
|
562 |
-
|
563 |
-
def main() -> None:
|
564 |
-
"""Main function for the Streamlit app."""
|
565 |
-
st.set_page_config(
|
566 |
-
page_title="Automated Chorus Detection",
|
567 |
-
page_icon="🎵",
|
568 |
-
layout="wide",
|
569 |
-
initial_sidebar_state="expanded",
|
570 |
-
)
|
571 |
-
|
572 |
-
# Apply custom theme
|
573 |
-
set_custom_theme()
|
574 |
-
|
575 |
-
# Header
|
576 |
-
col1, col2 = st.columns([1, 5])
|
577 |
-
with col2:
|
578 |
-
st.title("Automated Chorus Detection")
|
579 |
-
st.markdown('<div class="subheader">Analyze songs and identify chorus sections using AI</div>', unsafe_allow_html=True)
|
580 |
-
|
581 |
-
# Sidebar
|
582 |
-
st.sidebar.markdown("## About")
|
583 |
-
st.sidebar.markdown("""
|
584 |
-
This app uses a deep learning model trained on over 300 annotated songs
|
585 |
-
to identify chorus sections in music.
|
586 |
-
|
587 |
-
**Features:**
|
588 |
-
- Detects chorus sections in songs
|
589 |
-
- Creates playable audio snippets of choruses
|
590 |
-
- Visualizes audio waveform with highlighted choruses
|
591 |
-
|
592 |
-
For more information, visit the [GitHub repository](https://github.com/dennisvdang/chorus-detection).
|
593 |
-
""")
|
594 |
-
|
595 |
-
# Main content with vertically stacked input methods
|
596 |
-
st.markdown("## Select Input Method")
|
597 |
-
|
598 |
-
# File upload option (now first)
|
599 |
-
st.markdown("### Upload Audio File")
|
600 |
-
uploaded_file = st.file_uploader(
|
601 |
-
"",
|
602 |
-
type=["mp3", "wav", "ogg", "flac", "m4a"],
|
603 |
-
help="Upload an audio file in MP3, WAV, OGG, FLAC, or M4A format",
|
604 |
-
key="file_upload"
|
605 |
-
)
|
606 |
-
|
607 |
-
if uploaded_file is not None:
|
608 |
-
st.audio(uploaded_file, format="audio/mp3")
|
609 |
-
|
610 |
-
upload_process_button = st.button("Process Uploaded Audio")
|
611 |
-
|
612 |
-
# OR divider
|
613 |
-
st.markdown('<div class="or-divider">OR</div>', unsafe_allow_html=True)
|
614 |
-
|
615 |
-
# YouTube URL input (now second)
|
616 |
-
st.markdown("### YouTube URL")
|
617 |
-
url = st.text_input(
|
618 |
-
"",
|
619 |
-
placeholder="Paste a YouTube video URL here...",
|
620 |
-
help="Enter the URL of a YouTube video to analyze",
|
621 |
-
key="youtube_url"
|
622 |
-
)
|
623 |
-
|
624 |
-
youtube_process_button = st.button("Process YouTube Video")
|
625 |
-
|
626 |
-
# Process uploaded file if selected
|
627 |
-
if uploaded_file is not None and upload_process_button:
|
628 |
-
audio_path, file_name = process_uploaded_file(uploaded_file)
|
629 |
-
if audio_path:
|
630 |
-
analyze_audio(audio_path, file_name)
|
631 |
-
# Clean up the temporary file
|
632 |
-
try:
|
633 |
-
os.remove(audio_path)
|
634 |
-
except:
|
635 |
-
pass
|
636 |
-
|
637 |
-
# Process YouTube URL if selected
|
638 |
-
if youtube_process_button and url:
|
639 |
-
if not is_youtube_url(url):
|
640 |
-
st.error("Please enter a valid YouTube URL.")
|
641 |
-
else:
|
642 |
-
audio_path, video_name = process_youtube(url)
|
643 |
-
if audio_path:
|
644 |
-
analyze_audio(audio_path, video_name)
|
645 |
-
# Clean up the temporary file
|
646 |
-
try:
|
647 |
-
os.remove(audio_path)
|
648 |
-
except:
|
649 |
-
pass
|
650 |
-
|
651 |
-
|
652 |
-
if __name__ == "__main__":
|
653 |
-
main()
|
|
|
1 |
#!/usr/bin/env python3
|
2 |
# -*- coding: utf-8 -*-
|
3 |
|
4 |
+
"""
|
5 |
+
Main entry point for the Chorus Detection Streamlit app.
|
6 |
+
This file ensures the correct import paths are set up before running the app.
|
|
|
7 |
"""
|
8 |
|
9 |
import os
|
10 |
+
import sys
|
11 |
+
import logging
|
12 |
+
|
13 |
+
# Configure logging
|
14 |
+
logging.basicConfig(
|
15 |
+
level=logging.INFO,
|
16 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s"
|
17 |
+
)
|
18 |
+
logger = logging.getLogger("chorus-detection")
|
19 |
+
|
20 |
+
# Log environment info when running in HF Space
|
21 |
+
if os.environ.get("SPACE_ID"):
|
22 |
+
logger.info(f"Running in Hugging Face Space: {os.environ.get('SPACE_ID')}")
|
23 |
+
logger.info(f"PYTHONPATH: {os.environ.get('PYTHONPATH')}")
|
24 |
+
logger.info(f"MODEL_REVISION: {os.environ.get('MODEL_REVISION')}")
|
25 |
+
|
26 |
+
# Add the src directory to the Python path
|
27 |
try:
|
28 |
+
sys.path.insert(0, os.path.join(os.path.dirname(__file__), "src"))
|
29 |
+
logger.info(f"Added src directory to Python path: {os.path.join(os.path.dirname(__file__), 'src')}")
|
30 |
+
except Exception as e:
|
31 |
+
logger.error(f"Error setting up Python path: {e}")
|
32 |
+
sys.exit(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
# Import the app module from src
|
35 |
+
try:
|
36 |
+
from src.app import main
|
37 |
+
logger.info("Successfully imported main from src.app")
|
38 |
+
except ImportError as e:
|
39 |
+
logger.error(f"Failed to import main from src.app: {e}")
|
40 |
+
sys.exit(1)
|
41 |
|
42 |
+
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
try:
|
44 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
except Exception as e:
|
46 |
+
logger.error(f"Error running main: {e}", exc_info=True)
|
47 |
+
sys.exit(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
"""Script to download the chorus detection model from HuggingFace.
|
5 |
+
|
6 |
+
This script checks if the model file exists locally, and if not, downloads it
|
7 |
+
from the specified HuggingFace repository.
|
8 |
+
"""
|
9 |
+
|
10 |
+
import os
|
11 |
+
import sys
|
12 |
+
from pathlib import Path
|
13 |
+
import logging
|
14 |
+
|
15 |
+
# Use huggingface_hub for better integration with HF ecosystem
|
16 |
+
try:
|
17 |
+
from huggingface_hub import hf_hub_download
|
18 |
+
HF_HUB_AVAILABLE = True
|
19 |
+
except ImportError:
|
20 |
+
HF_HUB_AVAILABLE = False
|
21 |
+
import requests
|
22 |
+
from tqdm import tqdm
|
23 |
+
|
24 |
+
# Configure logging
|
25 |
+
logging.basicConfig(
|
26 |
+
level=logging.INFO,
|
27 |
+
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
28 |
+
)
|
29 |
+
logger = logging.getLogger("model-downloader")
|
30 |
+
|
31 |
+
def download_file_with_progress(url: str, destination: Path) -> None:
|
32 |
+
"""Download a file with a progress bar.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
url: URL to download from
|
36 |
+
destination: Path to save the file to
|
37 |
+
"""
|
38 |
+
# Create parent directories if they don't exist
|
39 |
+
destination.parent.mkdir(parents=True, exist_ok=True)
|
40 |
+
|
41 |
+
# Stream the download with progress bar
|
42 |
+
response = requests.get(url, stream=True)
|
43 |
+
response.raise_for_status()
|
44 |
+
|
45 |
+
total_size = int(response.headers.get('content-length', 0))
|
46 |
+
block_size = 1024 # 1 Kibibyte
|
47 |
+
|
48 |
+
logger.info(f"Downloading model from {url}")
|
49 |
+
logger.info(f"File size: {total_size / (1024*1024):.1f} MB")
|
50 |
+
|
51 |
+
with open(destination, 'wb') as file, tqdm(
|
52 |
+
desc=destination.name,
|
53 |
+
total=total_size,
|
54 |
+
unit='iB',
|
55 |
+
unit_scale=True,
|
56 |
+
unit_divisor=1024,
|
57 |
+
) as bar:
|
58 |
+
for data in response.iter_content(block_size):
|
59 |
+
size = file.write(data)
|
60 |
+
bar.update(size)
|
61 |
+
|
62 |
+
def ensure_model_exists(
|
63 |
+
model_filename: str = "best_model_V3.h5",
|
64 |
+
repo_id: str = None,
|
65 |
+
model_dir: Path = Path("models/CRNN"),
|
66 |
+
hf_model_filename: str = None,
|
67 |
+
revision: str = None
|
68 |
+
) -> Path:
|
69 |
+
"""Ensure the model file exists, downloading it if necessary.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
model_filename: Local filename for the model
|
73 |
+
repo_id: HuggingFace repository ID
|
74 |
+
model_dir: Directory to save the model to
|
75 |
+
hf_model_filename: Filename of the model in the HuggingFace repo
|
76 |
+
revision: Specific version of the model to use (SHA-256 hash)
|
77 |
+
|
78 |
+
Returns:
|
79 |
+
Path to the model file
|
80 |
+
"""
|
81 |
+
# Get parameters from environment variables if not provided
|
82 |
+
if repo_id is None:
|
83 |
+
repo_id = os.environ.get("MODEL_HF_REPO", "dennisvdang/chorus-detection")
|
84 |
+
|
85 |
+
if hf_model_filename is None:
|
86 |
+
hf_model_filename = os.environ.get("HF_MODEL_FILENAME", "chorus_detection_crnn.h5")
|
87 |
+
|
88 |
+
if revision is None:
|
89 |
+
revision = os.environ.get("MODEL_REVISION", "20e66eb3d0788373c3bdc5b28fa2f2587b0e475f3bbc47e8ab9ff0dbdbb2df32")
|
90 |
+
|
91 |
+
model_path = model_dir / model_filename
|
92 |
+
|
93 |
+
# Log environment info when running in HF Space
|
94 |
+
if os.environ.get("SPACE_ID"):
|
95 |
+
logger.info(f"Running in Hugging Face Space: {os.environ.get('SPACE_ID')}")
|
96 |
+
logger.info(f"Using model repo: {repo_id}")
|
97 |
+
logger.info(f"Using model file: {hf_model_filename}")
|
98 |
+
logger.info(f"Using revision: {revision}")
|
99 |
+
|
100 |
+
# Check if the model already exists
|
101 |
+
if model_path.exists():
|
102 |
+
logger.info(f"Model already exists at {model_path}")
|
103 |
+
return model_path
|
104 |
+
|
105 |
+
# Create model directory if it doesn't exist
|
106 |
+
model_dir.mkdir(parents=True, exist_ok=True)
|
107 |
+
|
108 |
+
logger.info(f"Model not found at {model_path}. Downloading...")
|
109 |
+
|
110 |
+
try:
|
111 |
+
if HF_HUB_AVAILABLE:
|
112 |
+
# Use huggingface_hub to download the model
|
113 |
+
logger.info(f"Downloading model from {repo_id}/{hf_model_filename} (revision: {revision}) using huggingface_hub")
|
114 |
+
downloaded_path = hf_hub_download(
|
115 |
+
repo_id=repo_id,
|
116 |
+
filename=hf_model_filename,
|
117 |
+
local_dir=model_dir,
|
118 |
+
local_dir_use_symlinks=False,
|
119 |
+
revision=revision # Specify the exact revision to use
|
120 |
+
)
|
121 |
+
|
122 |
+
# Rename if necessary
|
123 |
+
if os.path.basename(downloaded_path) != model_filename:
|
124 |
+
downloaded_path_obj = Path(downloaded_path)
|
125 |
+
model_path.parent.mkdir(parents=True, exist_ok=True)
|
126 |
+
if model_path.exists():
|
127 |
+
model_path.unlink()
|
128 |
+
downloaded_path_obj.rename(model_path)
|
129 |
+
logger.info(f"Renamed {downloaded_path} to {model_path}")
|
130 |
+
else:
|
131 |
+
# Fallback to direct download if huggingface_hub is not available
|
132 |
+
huggingface_url = f"https://huggingface.co/{repo_id}/resolve/{revision}/{hf_model_filename}"
|
133 |
+
download_file_with_progress(huggingface_url, model_path)
|
134 |
+
|
135 |
+
logger.info(f"Successfully downloaded model to {model_path}")
|
136 |
+
return model_path
|
137 |
+
except Exception as e:
|
138 |
+
logger.error(f"Failed to download model: {e}")
|
139 |
+
sys.exit(1)
|
140 |
+
|
141 |
+
if __name__ == "__main__":
|
142 |
+
ensure_model_exists()
|