Spaces:
Sleeping
Sleeping
import gradio as gr | |
import sahi.utils | |
from sahi import AutoDetectionModel | |
import sahi.predict | |
import sahi.slicing | |
from PIL import Image | |
import numpy | |
from huggingface_hub import hf_hub_download | |
import torch | |
IMAGE_SIZE = 640 | |
model_path=hf_hub_download("kadirnar/deprem_model_v1", filename="last.pt",revision="main") | |
current_device='cuda' if torch.cuda.is_available() else 'cpu' | |
model_types=["YOLOv5","YOLOv5 + SAHI"] | |
# Model | |
model = AutoDetectionModel.from_pretrained( | |
model_type="yolov5", model_path=model_path, device=current_device, confidence_threshold=0.5, image_size=IMAGE_SIZE | |
) | |
def sahi_yolo_inference( | |
model_type, | |
image, | |
slice_height=512, | |
slice_width=512, | |
overlap_height_ratio=0.2, | |
overlap_width_ratio=0.2, | |
postprocess_type="GREEDYNMM", | |
postprocess_match_metric="IOS", | |
postprocess_match_threshold=0.5, | |
postprocess_class_agnostic=False, | |
): | |
#image_width, image_height = image.size | |
# sliced_bboxes = sahi.slicing.get_slice_bboxes( | |
# image_height, | |
# image_width, | |
# slice_height, | |
# slice_width, | |
# False, | |
# overlap_height_ratio, | |
# overlap_width_ratio, | |
# ) | |
# if len(sliced_bboxes) > 60: | |
# raise ValueError( | |
# f"{len(sliced_bboxes)} slices are too much for huggingface spaces, try smaller slice size." | |
# ) | |
rect_th = None or max(round(sum(image.size) / 2 * 0.001), 1) | |
text_th = None or max(rect_th - 1, 1) | |
if "SAHI" in model_type: | |
prediction_result_2 = sahi.predict.get_sliced_prediction( | |
image=image, | |
detection_model=model, | |
slice_height=int(slice_height), | |
slice_width=int(slice_width), | |
overlap_height_ratio=overlap_height_ratio, | |
overlap_width_ratio=overlap_width_ratio, | |
postprocess_type=postprocess_type, | |
postprocess_match_metric=postprocess_match_metric, | |
postprocess_match_threshold=postprocess_match_threshold, | |
postprocess_class_agnostic=postprocess_class_agnostic, | |
) | |
visual_result_2 = sahi.utils.cv.visualize_object_predictions( | |
image=numpy.array(image), | |
object_prediction_list=prediction_result_2.object_prediction_list, | |
rect_th=rect_th, | |
text_th=text_th, | |
) | |
output = Image.fromarray(visual_result_2["image"]) | |
return output | |
else: | |
# standard inference | |
prediction_result_1 = sahi.predict.get_prediction( | |
image=image, detection_model=model | |
) | |
print(image) | |
visual_result_1 = sahi.utils.cv.visualize_object_predictions( | |
image=numpy.array(image), | |
object_prediction_list=prediction_result_1.object_prediction_list, | |
rect_th=rect_th, | |
text_th=text_th, | |
) | |
output = Image.fromarray(visual_result_1["image"]) | |
return output | |
# sliced inference | |
inputs = [ | |
gr.inputs.Dropdown(choices=model_types,label="Choose Model Type",type="value",), | |
gr.inputs.Image(type="pil", label="Original Image"), | |
gr.inputs.Number(default=512, label="slice_height"), | |
gr.inputs.Number(default=512, label="slice_width"), | |
gr.inputs.Number(default=0.2, label="overlap_height_ratio"), | |
gr.inputs.Number(default=0.2, label="overlap_width_ratio"), | |
gr.inputs.Dropdown( | |
["NMS", "GREEDYNMM"], | |
type="value", | |
default="GREEDYNMM", | |
label="postprocess_type", | |
), | |
gr.inputs.Dropdown( | |
["IOU", "IOS"], type="value", default="IOS", label="postprocess_type" | |
), | |
gr.inputs.Number(default=0.5, label="postprocess_match_threshold"), | |
gr.inputs.Checkbox(default=True, label="postprocess_class_agnostic"), | |
] | |
outputs = [ | |
gr.outputs.Image(type="pil", label="Output") | |
] | |
title = "Small Object Detection with SAHI + YOLOv5" | |
description = "SAHI + YOLOv5 demo for small object detection. Upload an image or click an example image to use." | |
article = "<p style='text-align: center'>SAHI is a lightweight vision library for performing large scale object detection/ instance segmentation.. <a href='https://github.com/obss/sahi'>SAHI Github</a> | <a href='https://medium.com/codable/sahi-a-vision-library-for-performing-sliced-inference-on-large-images-small-objects-c8b086af3b80'>SAHI Blog</a> | <a href='https://github.com/fcakyon/yolov5-pip'>YOLOv5 Github</a> </p>" | |
examples = [ | |
[model_types[1],"satellite_original.tif", 256, 256, 0.2, 0.2, "GREEDYNMM", "IOS", 0.5, True], | |
[model_types[0],"26.jpg", 256, 256, 0.2, 0.2, "GREEDYNMM", "IOS", 0.5, True], | |
[model_types[0],"27.jpg", 512, 512, 0.2, 0.2, "GREEDYNMM", "IOS", 0.5, True], | |
[model_types[0],"28.jpg", 512, 512, 0.2, 0.2, "GREEDYNMM", "IOS", 0.5, True], | |
[model_types[0],"31.jpg", 512, 512, 0.2, 0.2, "GREEDYNMM", "IOS", 0.5, True], | |
] | |
gr.Interface( | |
sahi_yolo_inference, | |
inputs, | |
outputs, | |
title=title, | |
description=description, | |
article=article, | |
examples=examples, | |
theme="huggingface", | |
).launch(debug=True, enable_queue=True,live=False) | |