Spaces:
Sleeping
Sleeping
from sahi import utils, predict, AutoDetectionModel | |
from PIL import Image | |
import gradio as gr | |
import numpy | |
import torch | |
import os | |
os.system('pip install git+https://github.com/fcakyon/ultralyticsplus.git') | |
model_id_list = ['deprem-ml/Binafarktespit-yolo5x-v1-xview', 'SerdarHelli/deprem_satellite_labeled_yolov8', 'kadirnar/yolov7-v0.1', 'kadirnar/UNet-EfficientNet-b6-Istanbul'] | |
current_device = "cuda" if torch.cuda.is_available() else "cpu" | |
model_types = ["YOLOv5", "YOLOv5 + SAHI", "YOLOv8", "YOLOv7", "Unet-Istanbul"] | |
def sahi_yolov5_inference( | |
image, | |
model_id, | |
model_type, | |
image_size, | |
slice_height=512, | |
slice_width=512, | |
overlap_height_ratio=0.1, | |
overlap_width_ratio=0.1, | |
postprocess_type="NMS", | |
postprocess_match_metric="IOU", | |
postprocess_match_threshold=0.25, | |
postprocess_class_agnostic=False, | |
): | |
rect_th = None or max(round(sum(image.size) / 2 * 0.0001), 1) | |
text_th = None or max(rect_th - 2, 1) | |
if model_type == "YOLOv5": | |
# standard inference | |
model = AutoDetectionModel.from_pretrained( | |
model_type="yolov5", | |
model_path=model_id, | |
device=current_device, | |
confidence_threshold=0.5, | |
image_size=image_size, | |
) | |
prediction_result_1 = predict.get_prediction( | |
image=image, detection_model=model | |
) | |
visual_result_1 = utils.cv.visualize_object_predictions( | |
image=numpy.array(image), | |
object_prediction_list=prediction_result_1.object_prediction_list, | |
rect_th=rect_th, | |
text_th=text_th, | |
) | |
output = Image.fromarray(visual_result_1["image"]) | |
return output | |
elif model_type == "YOLOv5 + SAHI": | |
model = AutoDetectionModel.from_pretrained( | |
model_type="yolov5", | |
model_path=model_id, | |
device=current_device, | |
confidence_threshold=0.5, | |
image_size=image_size, | |
) | |
prediction_result_2 = predict.get_sliced_prediction( | |
image=image, | |
detection_model=model, | |
slice_height=int(slice_height), | |
slice_width=int(slice_width), | |
overlap_height_ratio=overlap_height_ratio, | |
overlap_width_ratio=overlap_width_ratio, | |
postprocess_type=postprocess_type, | |
postprocess_match_metric=postprocess_match_metric, | |
postprocess_match_threshold=postprocess_match_threshold, | |
postprocess_class_agnostic=postprocess_class_agnostic, | |
) | |
visual_result_2 = utils.cv.visualize_object_predictions( | |
image=numpy.array(image), | |
object_prediction_list=prediction_result_2.object_prediction_list, | |
rect_th=rect_th, | |
text_th=text_th, | |
) | |
output = Image.fromarray(visual_result_2["image"]) | |
return output | |
elif model_type == "YOLOv8": | |
from ultralyticsplus import YOLO, render_result | |
model = YOLO('SerdarHelli/deprem_satellite_labeled_yolov8') | |
result = model.predict(image, imgsz=image_size)[0] | |
render = render_result(model=model, image=image, result=result, rect_th=rect_th, text_th=text_th) | |
return render | |
elif model_type == "YOLOv7": | |
import yolov7 | |
model = yolov7.load(model_id, device="cuda:0", hf_model=True, trace=False) | |
results = model([image], size=image_size) | |
return results.render()[0] | |
elif model_type == "Unet-Istanbul": | |
from utils.istanbul_unet import unet_prediction | |
output = unet_prediction(input_path=image, model_path=model_id) | |
return output | |
inputs = [ | |
gr.Image(type="pil", label="Original Image"), | |
gr.Dropdown(choices=model_id_list,label="Choose Model",value=model_id_list[0]), | |
gr.Dropdown( choices=model_types, label="Choose Model Type", value=model_types[1]), | |
gr.Slider(minimum=128, maximum=2048, value=640, step=32, label="Image Size"), | |
gr.Slider(minimum=128, maximum=2048, value=512, step=32, label="Slice Height"), | |
gr.Slider(minimum=128, maximum=2048, value=512, step=32, label="Slice Width"), | |
gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.1, label="Overlap Height Ratio"), | |
gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.1, label="Overlap Width Ratio"), | |
gr.Dropdown(["NMS", "GREEDYNMM"], type="value", value="NMS", label="Postprocess Type"), | |
gr.Dropdown(["IOU", "IOS"], type="value", value="IOU", label="Postprocess Type"), | |
gr.Slider(minimum=0.0, maximum=1.0, value=0.5, step=0.1, label="Postprocess Match Threshold"), | |
gr.Checkbox(value=True, label="Postprocess Class Agnostic"), | |
] | |
outputs = [gr.outputs.Image(type="pil", label="Output")] | |
title = "Building Detection from Satellite Images with SAHI + YOLOv5" | |
description = "SAHI + YOLOv5 demo for building detection from satellite images. Upload an image or click an example image to use." | |
article = "<p style='text-align: center'>SAHI is a lightweight vision library for performing large scale object detection/ instance segmentation.. <a href='https://github.com/obss/sahi'>SAHI Github</a> | <a href='https://medium.com/codable/sahi-a-vision-library-for-performing-sliced-inference-on-large-images-small-objects-c8b086af3b80'>SAHI Blog</a> | <a href='https://github.com/fcakyon/yolov5-pip'>YOLOv5 Github</a> </p>" | |
examples = [ | |
["data/26.jpg", 'deprem-ml/Binafarktespit-yolo5x-v1-xview', "YOLOv5 + SAHI", 640, 512, 512, 0.1, 0.1, "NMS", "IOU", 0.25, False], | |
["data/27.jpg", 'deprem-ml/Binafarktespit-yolo5x-v1-xview', "YOLOv5 + SAHI", 640, 512, 512, 0.1, 0.1, "NMS", "IOU", 0.25, False], | |
["data/28.jpg", 'deprem-ml/Binafarktespit-yolo5x-v1-xview', "YOLOv5 + SAHI", 640, 512, 512, 0.1, 0.1, "NMS", "IOU", 0.25, False], | |
["data/31.jpg", 'deprem-ml/SerdarHelli-yolov8-v1-xview', "YOLOv8", 640, 512, 512, 0.1, 0.1, "NMS", "IOU", 0.25, False], | |
#["data/Istanbul.jpg", 'kadirnar/UNet-EfficientNet-b6-Istanbul', "Unet-Istanbul", 512, 512, 512, 0.1, 0.1, "NMS", "IOU", 0.25, False], | |
] | |
demo = gr.Interface( | |
sahi_yolov5_inference, | |
inputs, | |
outputs, | |
title=title, | |
description=description, | |
article=article, | |
examples=examples, | |
theme="huggingface", | |
cache_examples=True, | |
) | |
demo.launch(debug=True, enable_queue=True) | |