import gradio as gr import sahi.utils from sahi import AutoDetectionModel import sahi.predict import sahi.slicing from PIL import Image import numpy from huggingface_hub import hf_hub_download import torch IMAGE_SIZE = 640 model_path=hf_hub_download("kadirnar/deprem_model_v1", filename="last.pt",revision="main") current_device='cuda' if torch.cuda.is_available() else 'cpu' model_types=["YOLOv5","YOLOv5 + SAHI"] # Model model = AutoDetectionModel.from_pretrained( model_type="yolov5", model_path=model_path, device=current_device, confidence_threshold=0.5, image_size=IMAGE_SIZE ) def sahi_yolo_inference( model_type, image, slice_height=1280, slice_width=1280, overlap_height_ratio=0.1, overlap_width_ratio=0.1, postprocess_type="NMS", postprocess_match_metric="IOU", postprocess_match_threshold=0.5, postprocess_class_agnostic=False, ): #image_width, image_height = image.size # sliced_bboxes = sahi.slicing.get_slice_bboxes( # image_height, # image_width, # slice_height, # slice_width, # False, # overlap_height_ratio, # overlap_width_ratio, # ) # if len(sliced_bboxes) > 60: # raise ValueError( # f"{len(sliced_bboxes)} slices are too much for huggingface spaces, try smaller slice size." # ) rect_th = None or max(round(sum(image.size) / 2 * 0.001), 1) text_th = None or max(rect_th - 1, 1) if "SAHI" in model_type: prediction_result_2 = sahi.predict.get_sliced_prediction( image=image, detection_model=model, slice_height=int(slice_height), slice_width=int(slice_width), overlap_height_ratio=overlap_height_ratio, overlap_width_ratio=overlap_width_ratio, postprocess_type=postprocess_type, postprocess_match_metric=postprocess_match_metric, postprocess_match_threshold=postprocess_match_threshold, postprocess_class_agnostic=postprocess_class_agnostic, ) visual_result_2 = sahi.utils.cv.visualize_object_predictions( image=numpy.array(image), object_prediction_list=prediction_result_2.object_prediction_list, rect_th=rect_th, text_th=text_th, ) output = Image.fromarray(visual_result_2["image"]) return output else: # standard inference prediction_result_1 = sahi.predict.get_prediction( image=image, detection_model=model ) print(image) visual_result_1 = sahi.utils.cv.visualize_object_predictions( image=numpy.array(image), object_prediction_list=prediction_result_1.object_prediction_list, rect_th=rect_th, text_th=text_th, ) output = Image.fromarray(visual_result_1["image"]) return output # sliced inference inputs = [ gr.inputs.Dropdown(choices=model_types,label="Choose Model Type",type="value",), gr.inputs.Image(type="pil", label="Original Image"), gr.inputs.Number(default=1920 label="slice_height"), gr.inputs.Number(default=1920, label="slice_width"), gr.inputs.Number(default=0.1, label="overlap_height_ratio"), gr.inputs.Number(default=0.1, label="overlap_width_ratio"), gr.inputs.Dropdown( ["NMS", "GREEDYNMM"], type="value", default="NMS", label="postprocess_type", ), gr.inputs.Dropdown( ["IOU", "IOS"], type="value", default="IOU", label="postprocess_type" ), gr.inputs.Number(default=0.5, label="postprocess_match_threshold"), gr.inputs.Checkbox(default=True, label="postprocess_class_agnostic"), ] outputs = [ gr.outputs.Image(type="pil", label="Output") ] title = "Small Object Detection with SAHI + YOLOv5" description = "SAHI + YOLOv5 demo for small object detection. Upload an image or click an example image to use." article = "<p style='text-align: center'>SAHI is a lightweight vision library for performing large scale object detection/ instance segmentation.. <a href='https://github.com/obss/sahi'>SAHI Github</a> | <a href='https://medium.com/codable/sahi-a-vision-library-for-performing-sliced-inference-on-large-images-small-objects-c8b086af3b80'>SAHI Blog</a> | <a href='https://github.com/fcakyon/yolov5-pip'>YOLOv5 Github</a> </p>" examples = [ [model_types[0],"26.jpg", 256, 256, 0.2, 0.2, "NMS", "IOU", 0.5, True], [model_types[0],"27.jpg", 512, 512, 0.2, 0.2, "NMS", "IOU", 0.5, True], [model_types[0],"28.jpg", 512, 512, 0.2, 0.2, "NMS", "IOU", 0.5, True], [model_types[0],"31.jpg", 512, 512, 0.2, 0.2, "NMS", "IOU", 0.5, True], ] gr.Interface( sahi_yolo_inference, inputs, outputs, title=title, description=description, article=article, examples=examples, theme="huggingface", ).launch(debug=True, enable_queue=True)