File size: 5,803 Bytes
7c27268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bccfc0
 
7c27268
 
 
 
 
 
02d2686
 
 
 
de5bd2a
02d2686
de5bd2a
48d0430
7c27268
1afd902
7c27268
 
 
 
 
6ceac94
 
7c27268
 
 
187c6c8
7c27268
5bccfc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c27268
187c6c8
5bccfc0
 
 
 
 
 
 
 
7c27268
5bccfc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c27268
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import gradio as gr
import cv2
import matplotlib
import numpy as np
import os
from PIL import Image
import spaces
import torch
import tempfile
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download

from depth_anything_v2.dpt import DepthAnythingV2

css = """
#img-display-container {
    max-height: 100vh;
}
#img-display-input {
    max-height: 80vh;
}
#img-display-output {
    max-height: 80vh;
}
#download {
    height: 62px;
}
"""
DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'

model_configs = {
    'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
    'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
    'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
    'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
}
encoder2name = {
    'vits': 'Small',
    'vitb': 'Base',
    'vitl': 'Large',
    'vitg': 'Giant', # we are undergoing company review procedures to release our giant model checkpoint
}
encoder = 'vitl'
model_name = encoder2name[encoder]
model = DepthAnythingV2(**model_configs[encoder])
filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-{model_name}", filename=f"depth_anything_v2_{encoder}.pth", repo_type="model")
state_dict = torch.load(filepath, map_location="cpu")
model.load_state_dict(state_dict)
model = model.to(DEVICE).eval()

title = "# Depth Anything V2"
description = """Official demo for **Depth Anything V2**.
Please refer to our [paper](https://arxiv.org/abs/2406.09414), [project page](https://depth-anything-v2.github.io), and [github](https://github.com/DepthAnything/Depth-Anything-V2) for more details."""

@spaces.GPU
def predict_depth(image):
    return model.infer_image(image)

def process_video(video_path):
    input_size = 518
    temp_output_path = tempfile.mktemp(suffix='.mp4')
    
    raw_video = cv2.VideoCapture(video_path)
    frame_width = int(raw_video.get(cv2.CAP_PROP_FRAME_WIDTH))
    frame_height = int(raw_video.get(cv2.CAP_PROP_FRAME_HEIGHT))
    frame_rate = int(raw_video.get(cv2.CAP_PROP_FPS))
    
    out = cv2.VideoWriter(temp_output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (frame_width, frame_height))
    
    while raw_video.isOpened():
        ret, raw_frame = raw_video.read()
        if not ret:
            break
        
        depth = model.infer_image(raw_frame, input_size)
        
        depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
        depth = depth.astype(np.uint8)
        colored_depth = (cmap(depth)[:, :, :3] * 255)[:, :, ::-1].astype(np.uint8)
    
        out.write(colored_depth)
    
    raw_video.release()
    out.release()
    
    return temp_output_path

with gr.Blocks(css=css) as demo:
    gr.Markdown(title)
    gr.Markdown(description)
    
    with gr.Tabs():
        with gr.TabItem("Image"):
            gr.Markdown("### Depth Prediction demo")
            with gr.Row():
                input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input')
                depth_image_slider = ImageSlider(label="Depth Map with Slider View", elem_id='img-display-output', position=0.5)
            submit = gr.Button(value="Compute Depth")
            gray_depth_file = gr.File(label="Grayscale depth map", elem_id="download",)
            raw_file = gr.File(label="16-bit raw output (can be considered as disparity)", elem_id="download",)
            
            cmap = matplotlib.colormaps.get_cmap('Spectral_r')

            def on_submit(image):
                original_image = image.copy()

                h, w = image.shape[:2]

                depth = predict_depth(image[:, :, ::-1])

                raw_depth = Image.fromarray(depth.astype('uint16'))
                tmp_raw_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
                raw_depth.save(tmp_raw_depth.name)

                depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
                depth = depth.astype(np.uint8)
                colored_depth = (cmap(depth)[:, :, :3] * 255).astype(np.uint8)

                gray_depth = Image.fromarray(depth)
                tmp_gray_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
                gray_depth.save(tmp_gray_depth.name)

                return [(original_image, colored_depth), tmp_gray_depth.name, tmp_raw_depth.name]
            
            submit.click(on_submit, inputs=[input_image], outputs=[depth_image_slider, gray_depth_file, raw_file])
            
            example_files = os.listdir('assets/examples')
            example_files.sort()
            example_files = [os.path.join('assets/examples', filename) for filename in example_files]
            examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=[depth_image_slider, gray_depth_file, raw_file], fn=on_submit)
        
        with gr.TabItem("Video"):
            gr.Markdown("### Video Depth Prediction demo")
            input_video = gr.Video(label="Input Video")
            output_video = gr.Video(label="Output Video")
            process_video_btn = gr.Button(value="Process Video")
            
            process_video_btn.click(process_video, inputs=[input_video], outputs=[output_video])
            
            example_files = os.listdir('assets/examples_video')
            example_files.sort()
            example_files = [os.path.join('assets/examples_video', filename) for filename in example_files]
            examples = gr.Examples(examples=example_files, inputs=[input_video], outputs=[output_video], fn=process_video)

if __name__ == '__main__':
    demo.queue().launch(share=True)