File size: 13,506 Bytes
240e0a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
"""
这里实现2个click命令:
第一个:
 接收一个完整的s3路径,例如:s3://llm-pdf-text/pdf_ebook_and_paper/pre-clean-mm-markdown/v014/part-660420b490be-000008.jsonl?bytes=0,81350
    1)根据~/magic-pdf.json里的ak,sk等,构造s3cliReader读取到这个jsonl的对应行,返回json对象。
    2)根据Json对象里的pdf的s3路径获取到他的ak,sk,endpoint,构造出s3cliReader用来读取pdf
    3)从magic-pdf.json里读取到本地保存图片、Md等的临时目录位置,构造出LocalImageWriter,用来保存截图
    4)从magic-pdf.json里读取到本地保存图片、Md等的临时目录位置,构造出LocalIRdWriter,用来读写本地文件
    
    最后把以上步骤准备好的对象传入真正的解析API
    
第二个:
  接收1)pdf的本地路径。2)模型json文件(可选)。然后:
    1)根据~/magic-pdf.json读取到本地保存图片、md等临时目录的位置,构造出LocalImageWriter,用来保存截图
    2)从magic-pdf.json里读取到本地保存图片、Md等的临时目录位置,构造出LocalIRdWriter,用来读写本地文件
    3)根据约定,根据pdf本地路径,推导出pdf模型的json,并读入
    

效果:
python magicpdf.py json-command --json  s3://llm-pdf-text/scihub/xxxx.json?bytes=0,81350
python magicpdf.py pdf-command --pdf  /home/llm/Downloads/xxxx.pdf --model /home/llm/Downloads/xxxx.json  或者 python magicpdf.py --pdf  /home/llm/Downloads/xxxx.pdf
"""

import os
import json as json_parse
import click
from loguru import logger
from pathlib import Path
from magic_pdf.libs.version import __version__

from magic_pdf.libs.MakeContentConfig import DropMode, MakeMode
from magic_pdf.libs.draw_bbox import draw_layout_bbox, draw_span_bbox
from magic_pdf.pipe.UNIPipe import UNIPipe
from magic_pdf.pipe.OCRPipe import OCRPipe
from magic_pdf.pipe.TXTPipe import TXTPipe
from magic_pdf.libs.path_utils import (
    parse_s3path,
    parse_s3_range_params,
    remove_non_official_s3_args,
)
from magic_pdf.libs.config_reader import (
    get_local_dir,
    get_s3_config,
)
from magic_pdf.rw.S3ReaderWriter import S3ReaderWriter
from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter
from magic_pdf.rw.AbsReaderWriter import AbsReaderWriter
import csv
import copy
import magic_pdf.model as model_config

parse_pdf_methods = click.Choice(["ocr", "txt", "auto"])


def prepare_env(pdf_file_name, method):
    local_parent_dir = os.path.join(get_local_dir(), "magic-pdf", pdf_file_name, method)

    local_image_dir = os.path.join(str(local_parent_dir), "images")
    local_md_dir = local_parent_dir
    os.makedirs(local_image_dir, exist_ok=True)
    os.makedirs(local_md_dir, exist_ok=True)
    return local_image_dir, local_md_dir


def write_to_csv(csv_file_path, csv_data):
    with open(csv_file_path, mode="a", newline="", encoding="utf-8") as csvfile:
        # 创建csv writer对象
        csv_writer = csv.writer(csvfile)
        # 写入数据
        csv_writer.writerow(csv_data)
    logger.info(f"数据已成功追加到 '{csv_file_path}'")


def do_parse(
        pdf_file_name,
        pdf_bytes,
        model_list,
        parse_method,
        f_draw_span_bbox=True,
        f_draw_layout_bbox=True,
        f_dump_md=True,
        f_dump_middle_json=True,
        f_dump_model_json=True,
        f_dump_orig_pdf=True,
        f_dump_content_list=True,
        f_make_md_mode=MakeMode.MM_MD,
):

    orig_model_list = copy.deepcopy(model_list)

    local_image_dir, local_md_dir = prepare_env(pdf_file_name, parse_method)
    logger.info(f"local output dir is {local_md_dir}")
    image_writer, md_writer = DiskReaderWriter(local_image_dir), DiskReaderWriter(local_md_dir)
    image_dir = str(os.path.basename(local_image_dir))

    if parse_method == "auto":
        jso_useful_key = {"_pdf_type": "", "model_list": model_list}
        pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer, is_debug=True)
    elif parse_method == "txt":
        pipe = TXTPipe(pdf_bytes, model_list, image_writer, is_debug=True)
    elif parse_method == "ocr":
        pipe = OCRPipe(pdf_bytes, model_list, image_writer, is_debug=True)
    else:
        logger.error("unknown parse method")
        exit(1)

    pipe.pipe_classify()

    """如果没有传入有效的模型数据,则使用内置model解析"""
    if len(model_list) == 0:
        if model_config.__use_inside_model__:
            pipe.pipe_analyze()
            orig_model_list = copy.deepcopy(pipe.model_list)
        else:
            logger.error("need model list input")
            exit(1)

    pipe.pipe_parse()
    pdf_info = pipe.pdf_mid_data["pdf_info"]
    if f_draw_layout_bbox:
        draw_layout_bbox(pdf_info, pdf_bytes, local_md_dir)
    if f_draw_span_bbox:
        draw_span_bbox(pdf_info, pdf_bytes, local_md_dir)

    md_content = pipe.pipe_mk_markdown(image_dir, drop_mode=DropMode.NONE, md_make_mode=f_make_md_mode)
    if f_dump_md:
        """写markdown"""
        md_writer.write(
            content=md_content,
            path=f"{pdf_file_name}.md",
            mode=AbsReaderWriter.MODE_TXT,
        )

    if f_dump_middle_json:
        """写middle_json"""
        md_writer.write(
            content=json_parse.dumps(pipe.pdf_mid_data, ensure_ascii=False, indent=4),
            path=f"{pdf_file_name}_middle.json",
            mode=AbsReaderWriter.MODE_TXT,
        )

    if f_dump_model_json:
        """写model_json"""
        md_writer.write(
            content=json_parse.dumps(orig_model_list, ensure_ascii=False, indent=4),
            path=f"{pdf_file_name}_model.json",
            mode=AbsReaderWriter.MODE_TXT,
        )

    if f_dump_orig_pdf:
        """写源pdf"""
        md_writer.write(
            content=pdf_bytes,
            path=f"{pdf_file_name}_origin.pdf",
            mode=AbsReaderWriter.MODE_BIN,
        )

    content_list = pipe.pipe_mk_uni_format(image_dir, drop_mode=DropMode.NONE)
    if f_dump_content_list:
        """写content_list"""
        md_writer.write(
            content=json_parse.dumps(content_list, ensure_ascii=False, indent=4),
            path=f"{pdf_file_name}_content_list.json",
            mode=AbsReaderWriter.MODE_TXT,
        )


@click.group()
@click.version_option(__version__, "--version", "-v", help="显示版本信息")
@click.help_option("--help", "-h", help="显示帮助信息")
def cli():
    pass


@cli.command()
@click.option("--json", type=str, help="输入一个S3路径")
@click.option(
    "--method",
    type=parse_pdf_methods,
    help="指定解析方法。txt: 文本型 pdf 解析方法, ocr: 光学识别解析 pdf, auto: 程序智能选择解析方法",
    default="auto",
)
@click.option("--inside_model", type=click.BOOL, default=True, help="使用内置模型测试")
@click.option("--model_mode", type=click.STRING, default="full",
              help="内置模型选择。lite: 快速解析,精度较低,full: 高精度解析,速度较慢")
def json_command(json, method, inside_model, model_mode):
    model_config.__use_inside_model__ = inside_model
    model_config.__model_mode__ = model_mode

    if not json.startswith("s3://"):
        logger.error("usage: magic-pdf json-command --json s3://some_bucket/some_path")
        exit(1)

    def read_s3_path(s3path):
        bucket, key = parse_s3path(s3path)

        s3_ak, s3_sk, s3_endpoint = get_s3_config(bucket)
        s3_rw = S3ReaderWriter(
            s3_ak, s3_sk, s3_endpoint, "auto", remove_non_official_s3_args(s3path)
        )
        may_range_params = parse_s3_range_params(s3path)
        if may_range_params is None or 2 != len(may_range_params):
            byte_start, byte_end = 0, None
        else:
            byte_start, byte_end = int(may_range_params[0]), int(may_range_params[1])
            byte_end += byte_start - 1
        return s3_rw.read_jsonl(
            remove_non_official_s3_args(s3path),
            byte_start,
            byte_end,
            AbsReaderWriter.MODE_BIN,
        )

    jso = json_parse.loads(read_s3_path(json).decode("utf-8"))
    s3_file_path = jso.get("file_location")
    if s3_file_path is None:
        s3_file_path = jso.get("path")
    pdf_file_name = Path(s3_file_path).stem
    pdf_data = read_s3_path(s3_file_path)

    do_parse(
        pdf_file_name,
        pdf_data,
        jso["doc_layout_result"],
        method,
    )


@cli.command()
@click.option("--local_json", type=str, help="输入一个本地jsonl路径")
@click.option(
    "--method",
    type=parse_pdf_methods,
    help="指定解析方法。txt: 文本型 pdf 解析方法, ocr: 光学识别解析 pdf, auto: 程序智能选择解析方法",
    default="auto",
)
@click.option("--inside_model", type=click.BOOL, default=True, help="使用内置模型测试")
@click.option("--model_mode", type=click.STRING, default="full",
              help="内置模型选择。lite: 快速解析,精度较低,full: 高精度解析,速度较慢")
def local_json_command(local_json, method, inside_model, model_mode):
    model_config.__use_inside_model__ = inside_model
    model_config.__model_mode__ = model_mode

    def read_s3_path(s3path):
        bucket, key = parse_s3path(s3path)

        s3_ak, s3_sk, s3_endpoint = get_s3_config(bucket)
        s3_rw = S3ReaderWriter(
            s3_ak, s3_sk, s3_endpoint, "auto", remove_non_official_s3_args(s3path)
        )
        may_range_params = parse_s3_range_params(s3path)
        if may_range_params is None or 2 != len(may_range_params):
            byte_start, byte_end = 0, None
        else:
            byte_start, byte_end = int(may_range_params[0]), int(may_range_params[1])
            byte_end += byte_start - 1
        return s3_rw.read_jsonl(
            remove_non_official_s3_args(s3path),
            byte_start,
            byte_end,
            AbsReaderWriter.MODE_BIN,
        )

    with open(local_json, "r", encoding="utf-8") as f:
        for json_line in f:
            jso = json_parse.loads(json_line)

            s3_file_path = jso.get("file_location")
            if s3_file_path is None:
                s3_file_path = jso.get("path")
            pdf_file_name = Path(s3_file_path).stem
            pdf_data = read_s3_path(s3_file_path)
            do_parse(
                pdf_file_name,
                pdf_data,
                jso["doc_layout_result"],
                method,
            )


@cli.command()
@click.option(
    "--pdf", type=click.Path(exists=True), required=True,
    help='pdf 文件路径, 支持单个文件或文件列表, 文件列表需要以".list"结尾, 一行一个pdf文件路径')
@click.option("--model", type=click.Path(exists=True), help="模型的路径")
@click.option(
    "--method",
    type=parse_pdf_methods,
    help="指定解析方法。txt: 文本型 pdf 解析方法, ocr: 光学识别解析 pdf, auto: 程序智能选择解析方法",
    default="auto",
)
@click.option("--inside_model", type=click.BOOL, default=True, help="使用内置模型测试")
@click.option("--model_mode", type=click.STRING, default="full",
              help="内置模型选择。lite: 快速解析,精度较低,full: 高精度解析,速度较慢")
def pdf_command(pdf, model, method, inside_model, model_mode):
    model_config.__use_inside_model__ = inside_model
    model_config.__model_mode__ = model_mode

    def read_fn(path):
        disk_rw = DiskReaderWriter(os.path.dirname(path))
        return disk_rw.read(os.path.basename(path), AbsReaderWriter.MODE_BIN)

    def get_model_json(model_path, doc_path):
        # 这里处理pdf和模型相关的逻辑
        if model_path is None:
            file_name_without_extension, extension = os.path.splitext(doc_path)
            if extension == ".pdf":
                model_path = file_name_without_extension + ".json"
            else:
                raise Exception("pdf_path input error")
            if not os.path.exists(model_path):
                logger.warning(
                    f"not found json {model_path} existed"
                )
                # 本地无模型数据则调用内置paddle分析,先传空list,在内部识别到空list再调用paddle
                model_json = "[]"
            else:
                model_json = read_fn(model_path).decode("utf-8")
        else:
            model_json = read_fn(model_path).decode("utf-8")

        return model_json

    def parse_doc(doc_path):
        try:
            file_name = str(Path(doc_path).stem)
            pdf_data = read_fn(doc_path)
            jso = json_parse.loads(get_model_json(model, doc_path))

            do_parse(
                file_name,
                pdf_data,
                jso,
                method,
            )

        except Exception as e:
            logger.exception(e)

    if not pdf:
        logger.error(f"Error: Missing argument '--pdf'.")
        exit(f"Error: Missing argument '--pdf'.")
    else:
        '''适配多个文档的list文件输入'''
        if pdf.endswith(".list"):
            with open(pdf, "r") as f:
                for line in f.readlines():
                    line = line.strip()
                    parse_doc(line)
        else:
            '''适配单个文档的输入'''
            parse_doc(pdf)


if __name__ == "__main__":
    """
    python magic_pdf/cli/magicpdf.py json-command --json s3://llm-pdf-text/pdf_ebook_and_paper/manual/v001/part-660407a28beb-000002.jsonl?bytes=0,63551
    """
    cli()