File size: 25,227 Bytes
240e0a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 |
import json
import math
from magic_pdf.libs.commons import fitz
from loguru import logger
from magic_pdf.libs.commons import join_path
from magic_pdf.libs.coordinate_transform import get_scale_ratio
from magic_pdf.libs.ocr_content_type import ContentType
from magic_pdf.rw.AbsReaderWriter import AbsReaderWriter
from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter
from magic_pdf.libs.math import float_gt
from magic_pdf.libs.boxbase import (
_is_in,
bbox_relative_pos,
bbox_distance,
_is_part_overlap,
calculate_overlap_area_in_bbox1_area_ratio,
calculate_iou,
)
from magic_pdf.libs.ModelBlockTypeEnum import ModelBlockTypeEnum
CAPATION_OVERLAP_AREA_RATIO = 0.6
class MagicModel:
"""
每个函数没有得到元素的时候返回空list
"""
def __fix_axis(self):
for model_page_info in self.__model_list:
need_remove_list = []
page_no = model_page_info["page_info"]["page_no"]
horizontal_scale_ratio, vertical_scale_ratio = get_scale_ratio(
model_page_info, self.__docs[page_no]
)
layout_dets = model_page_info["layout_dets"]
for layout_det in layout_dets:
if layout_det.get("bbox") is not None:
# 兼容直接输出bbox的模型数据,如paddle
x0, y0, x1, y1 = layout_det["bbox"]
else:
# 兼容直接输出poly的模型数据,如xxx
x0, y0, _, _, x1, y1, _, _ = layout_det["poly"]
bbox = [
int(x0 / horizontal_scale_ratio),
int(y0 / vertical_scale_ratio),
int(x1 / horizontal_scale_ratio),
int(y1 / vertical_scale_ratio),
]
layout_det["bbox"] = bbox
# 删除高度或者宽度小于等于0的spans
if bbox[2] - bbox[0] <= 0 or bbox[3] - bbox[1] <= 0:
need_remove_list.append(layout_det)
for need_remove in need_remove_list:
layout_dets.remove(need_remove)
def __fix_by_remove_low_confidence(self):
for model_page_info in self.__model_list:
need_remove_list = []
layout_dets = model_page_info["layout_dets"]
for layout_det in layout_dets:
if layout_det["score"] <= 0.05:
need_remove_list.append(layout_det)
else:
continue
for need_remove in need_remove_list:
layout_dets.remove(need_remove)
def __fix_by_remove_high_iou_and_low_confidence(self):
for model_page_info in self.__model_list:
need_remove_list = []
layout_dets = model_page_info["layout_dets"]
for layout_det1 in layout_dets:
for layout_det2 in layout_dets:
if layout_det1 == layout_det2:
continue
if layout_det1["category_id"] in [
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
] and layout_det2["category_id"] in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]:
if (
calculate_iou(layout_det1["bbox"], layout_det2["bbox"])
> 0.9
):
if layout_det1["score"] < layout_det2["score"]:
layout_det_need_remove = layout_det1
else:
layout_det_need_remove = layout_det2
if layout_det_need_remove not in need_remove_list:
need_remove_list.append(layout_det_need_remove)
else:
continue
else:
continue
for need_remove in need_remove_list:
layout_dets.remove(need_remove)
def __init__(self, model_list: list, docs: fitz.Document):
self.__model_list = model_list
self.__docs = docs
"""为所有模型数据添加bbox信息(缩放,poly->bbox)"""
self.__fix_axis()
"""删除置信度特别低的模型数据(<0.05),提高质量"""
self.__fix_by_remove_low_confidence()
"""删除高iou(>0.9)数据中置信度较低的那个"""
self.__fix_by_remove_high_iou_and_low_confidence()
def __reduct_overlap(self, bboxes):
N = len(bboxes)
keep = [True] * N
for i in range(N):
for j in range(N):
if i == j:
continue
if _is_in(bboxes[i]["bbox"], bboxes[j]["bbox"]):
keep[i] = False
return [bboxes[i] for i in range(N) if keep[i]]
def __tie_up_category_by_distance(
self, page_no, subject_category_id, object_category_id
):
"""
假定每个 subject 最多有一个 object (可以有多个相邻的 object 合并为单个 object),每个 object 只能属于一个 subject
"""
ret = []
MAX_DIS_OF_POINT = 10**9 + 7
# subject 和 object 的 bbox 会合并成一个大的 bbox (named: merged bbox)。 筛选出所有和 merged bbox 有 overlap 且 overlap 面积大于 object 的面积的 subjects。
# 再求出筛选出的 subjects 和 object 的最短距离!
def may_find_other_nearest_bbox(subject_idx, object_idx):
ret = float("inf")
x0 = min(
all_bboxes[subject_idx]["bbox"][0], all_bboxes[object_idx]["bbox"][0]
)
y0 = min(
all_bboxes[subject_idx]["bbox"][1], all_bboxes[object_idx]["bbox"][1]
)
x1 = max(
all_bboxes[subject_idx]["bbox"][2], all_bboxes[object_idx]["bbox"][2]
)
y1 = max(
all_bboxes[subject_idx]["bbox"][3], all_bboxes[object_idx]["bbox"][3]
)
object_area = abs(
all_bboxes[object_idx]["bbox"][2] - all_bboxes[object_idx]["bbox"][0]
) * abs(
all_bboxes[object_idx]["bbox"][3] - all_bboxes[object_idx]["bbox"][1]
)
for i in range(len(all_bboxes)):
if (
i == subject_idx
or all_bboxes[i]["category_id"] != subject_category_id
):
continue
if _is_part_overlap([x0, y0, x1, y1], all_bboxes[i]["bbox"]) or _is_in(
all_bboxes[i]["bbox"], [x0, y0, x1, y1]
):
i_area = abs(
all_bboxes[i]["bbox"][2] - all_bboxes[i]["bbox"][0]
) * abs(all_bboxes[i]["bbox"][3] - all_bboxes[i]["bbox"][1])
if i_area >= object_area:
ret = min(float("inf"), dis[i][object_idx])
return ret
def expand_bbbox(idxes):
x0s = [all_bboxes[idx]["bbox"][0] for idx in idxes]
y0s = [all_bboxes[idx]["bbox"][1] for idx in idxes]
x1s = [all_bboxes[idx]["bbox"][2] for idx in idxes]
y1s = [all_bboxes[idx]["bbox"][3] for idx in idxes]
return min(x0s), min(y0s), max(x1s), max(y1s)
subjects = self.__reduct_overlap(
list(
map(
lambda x: {"bbox": x["bbox"], "score": x["score"]},
filter(
lambda x: x["category_id"] == subject_category_id,
self.__model_list[page_no]["layout_dets"],
),
)
)
)
objects = self.__reduct_overlap(
list(
map(
lambda x: {"bbox": x["bbox"], "score": x["score"]},
filter(
lambda x: x["category_id"] == object_category_id,
self.__model_list[page_no]["layout_dets"],
),
)
)
)
subject_object_relation_map = {}
subjects.sort(
key=lambda x: x["bbox"][0] ** 2 + x["bbox"][1] ** 2
) # get the distance !
all_bboxes = []
for v in subjects:
all_bboxes.append(
{
"category_id": subject_category_id,
"bbox": v["bbox"],
"score": v["score"],
}
)
for v in objects:
all_bboxes.append(
{
"category_id": object_category_id,
"bbox": v["bbox"],
"score": v["score"],
}
)
N = len(all_bboxes)
dis = [[MAX_DIS_OF_POINT] * N for _ in range(N)]
for i in range(N):
for j in range(i):
if (
all_bboxes[i]["category_id"] == subject_category_id
and all_bboxes[j]["category_id"] == subject_category_id
):
continue
dis[i][j] = bbox_distance(all_bboxes[i]["bbox"], all_bboxes[j]["bbox"])
dis[j][i] = dis[i][j]
used = set()
for i in range(N):
# 求第 i 个 subject 所关联的 object
if all_bboxes[i]["category_id"] != subject_category_id:
continue
seen = set()
candidates = []
arr = []
for j in range(N):
pos_flag_count = sum(
list(
map(
lambda x: 1 if x else 0,
bbox_relative_pos(
all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
),
)
)
)
if pos_flag_count > 1:
continue
if (
all_bboxes[j]["category_id"] != object_category_id
or j in used
or dis[i][j] == MAX_DIS_OF_POINT
):
continue
left, right, _, _ = bbox_relative_pos(
all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
) # 由 pos_flag_count 相关逻辑保证本段逻辑准确性
if left or right:
one_way_dis = all_bboxes[i]["bbox"][2] - all_bboxes[i]["bbox"][0]
else:
one_way_dis = all_bboxes[i]["bbox"][3] - all_bboxes[i]["bbox"][1]
if dis[i][j] > one_way_dis:
continue
arr.append((dis[i][j], j))
arr.sort(key=lambda x: x[0])
if len(arr) > 0:
# bug: 离该subject 最近的 object 可能跨越了其它的 subject 。比如 [this subect] [some sbuject] [the nearest objec of subject]
if may_find_other_nearest_bbox(i, arr[0][1]) >= arr[0][0]:
candidates.append(arr[0][1])
seen.add(arr[0][1])
# 已经获取初始种子
for j in set(candidates):
tmp = []
for k in range(i + 1, N):
pos_flag_count = sum(
list(
map(
lambda x: 1 if x else 0,
bbox_relative_pos(
all_bboxes[j]["bbox"], all_bboxes[k]["bbox"]
),
)
)
)
if pos_flag_count > 1:
continue
if (
all_bboxes[k]["category_id"] != object_category_id
or k in used
or k in seen
or dis[j][k] == MAX_DIS_OF_POINT
or dis[j][k] > dis[i][j]
):
continue
is_nearest = True
for l in range(i + 1, N):
if l in (j, k) or l in used or l in seen:
continue
if not float_gt(dis[l][k], dis[j][k]):
is_nearest = False
break
if is_nearest:
nx0, ny0, nx1, ny1 = expand_bbbox(list(seen) + [k])
n_dis = bbox_distance(all_bboxes[i]["bbox"], [nx0, ny0, nx1, ny1])
if float_gt(dis[i][j], n_dis):
continue
tmp.append(k)
seen.add(k)
candidates = tmp
if len(candidates) == 0:
break
# 已经获取到某个 figure 下所有的最靠近的 captions,以及最靠近这些 captions 的 captions 。
# 先扩一下 bbox,
ox0, oy0, ox1, oy1 = expand_bbbox(list(seen) + [i])
ix0, iy0, ix1, iy1 = all_bboxes[i]["bbox"]
# 分成了 4 个截取空间,需要计算落在每个截取空间下 objects 合并后占据的矩形面积
caption_poses = [
[ox0, oy0, ix0, oy1],
[ox0, oy0, ox1, iy0],
[ox0, iy1, ox1, oy1],
[ix1, oy0, ox1, oy1],
]
caption_areas = []
for bbox in caption_poses:
embed_arr = []
for idx in seen:
if (
calculate_overlap_area_in_bbox1_area_ratio(
all_bboxes[idx]["bbox"], bbox
)
> CAPATION_OVERLAP_AREA_RATIO
):
embed_arr.append(idx)
if len(embed_arr) > 0:
embed_x0 = min([all_bboxes[idx]["bbox"][0] for idx in embed_arr])
embed_y0 = min([all_bboxes[idx]["bbox"][1] for idx in embed_arr])
embed_x1 = max([all_bboxes[idx]["bbox"][2] for idx in embed_arr])
embed_y1 = max([all_bboxes[idx]["bbox"][3] for idx in embed_arr])
caption_areas.append(
int(abs(embed_x1 - embed_x0) * abs(embed_y1 - embed_y0))
)
else:
caption_areas.append(0)
subject_object_relation_map[i] = []
if max(caption_areas) > 0:
max_area_idx = caption_areas.index(max(caption_areas))
caption_bbox = caption_poses[max_area_idx]
for j in seen:
if (
calculate_overlap_area_in_bbox1_area_ratio(
all_bboxes[j]["bbox"], caption_bbox
)
> CAPATION_OVERLAP_AREA_RATIO
):
used.add(j)
subject_object_relation_map[i].append(j)
for i in sorted(subject_object_relation_map.keys()):
result = {
"subject_body": all_bboxes[i]["bbox"],
"all": all_bboxes[i]["bbox"],
"score": all_bboxes[i]["score"],
}
if len(subject_object_relation_map[i]) > 0:
x0 = min(
[all_bboxes[j]["bbox"][0] for j in subject_object_relation_map[i]]
)
y0 = min(
[all_bboxes[j]["bbox"][1] for j in subject_object_relation_map[i]]
)
x1 = max(
[all_bboxes[j]["bbox"][2] for j in subject_object_relation_map[i]]
)
y1 = max(
[all_bboxes[j]["bbox"][3] for j in subject_object_relation_map[i]]
)
result["object_body"] = [x0, y0, x1, y1]
result["all"] = [
min(x0, all_bboxes[i]["bbox"][0]),
min(y0, all_bboxes[i]["bbox"][1]),
max(x1, all_bboxes[i]["bbox"][2]),
max(y1, all_bboxes[i]["bbox"][3]),
]
ret.append(result)
total_subject_object_dis = 0
# 计算已经配对的 distance 距离
for i in subject_object_relation_map.keys():
for j in subject_object_relation_map[i]:
total_subject_object_dis += bbox_distance(
all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
)
# 计算未匹配的 subject 和 object 的距离(非精确版)
with_caption_subject = set(
[
key
for key in subject_object_relation_map.keys()
if len(subject_object_relation_map[i]) > 0
]
)
for i in range(N):
if all_bboxes[i]["category_id"] != object_category_id or i in used:
continue
candidates = []
for j in range(N):
if (
all_bboxes[j]["category_id"] != subject_category_id
or j in with_caption_subject
):
continue
candidates.append((dis[i][j], j))
if len(candidates) > 0:
candidates.sort(key=lambda x: x[0])
total_subject_object_dis += candidates[0][1]
with_caption_subject.add(j)
return ret, total_subject_object_dis
def get_imgs(self, page_no: int):
figure_captions, _ = self.__tie_up_category_by_distance(
page_no, 3, 4
)
return [
{
"bbox": record["all"],
"img_body_bbox": record["subject_body"],
"img_caption_bbox": record.get("object_body", None),
"score": record["score"],
}
for record in figure_captions
]
def get_tables(
self, page_no: int
) -> list: # 3个坐标, caption, table主体,table-note
with_captions, _ = self.__tie_up_category_by_distance(page_no, 5, 6)
with_footnotes, _ = self.__tie_up_category_by_distance(page_no, 5, 7)
ret = []
N, M = len(with_captions), len(with_footnotes)
assert N == M
for i in range(N):
record = {
"score": with_captions[i]["score"],
"table_caption_bbox": with_captions[i].get("object_body", None),
"table_body_bbox": with_captions[i]["subject_body"],
"table_footnote_bbox": with_footnotes[i].get("object_body", None),
}
x0 = min(with_captions[i]["all"][0], with_footnotes[i]["all"][0])
y0 = min(with_captions[i]["all"][1], with_footnotes[i]["all"][1])
x1 = max(with_captions[i]["all"][2], with_footnotes[i]["all"][2])
y1 = max(with_captions[i]["all"][3], with_footnotes[i]["all"][3])
record["bbox"] = [x0, y0, x1, y1]
ret.append(record)
return ret
def get_equations(self, page_no: int) -> list: # 有坐标,也有字
inline_equations = self.__get_blocks_by_type(
ModelBlockTypeEnum.EMBEDDING.value, page_no, ["latex"]
)
interline_equations = self.__get_blocks_by_type(
ModelBlockTypeEnum.ISOLATED.value, page_no, ["latex"]
)
interline_equations_blocks = self.__get_blocks_by_type(
ModelBlockTypeEnum.ISOLATE_FORMULA.value, page_no
)
return inline_equations, interline_equations, interline_equations_blocks
def get_discarded(self, page_no: int) -> list: # 自研模型,只有坐标
blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.ABANDON.value, page_no)
return blocks
def get_text_blocks(self, page_no: int) -> list: # 自研模型搞的,只有坐标,没有字
blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.PLAIN_TEXT.value, page_no)
return blocks
def get_title_blocks(self, page_no: int) -> list: # 自研模型,只有坐标,没字
blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.TITLE.value, page_no)
return blocks
def get_ocr_text(self, page_no: int) -> list: # paddle 搞的,有字也有坐标
text_spans = []
model_page_info = self.__model_list[page_no]
layout_dets = model_page_info["layout_dets"]
for layout_det in layout_dets:
if layout_det["category_id"] == "15":
span = {
"bbox": layout_det["bbox"],
"content": layout_det["text"],
}
text_spans.append(span)
return text_spans
def get_all_spans(self, page_no: int) -> list:
def remove_duplicate_spans(spans):
new_spans = []
for span in spans:
if not any(span == existing_span for existing_span in new_spans):
new_spans.append(span)
return new_spans
all_spans = []
model_page_info = self.__model_list[page_no]
layout_dets = model_page_info["layout_dets"]
allow_category_id_list = [3, 5, 13, 14, 15]
"""当成span拼接的"""
# 3: 'image', # 图片
# 5: 'table', # 表格
# 13: 'inline_equation', # 行内公式
# 14: 'interline_equation', # 行间公式
# 15: 'text', # ocr识别文本
for layout_det in layout_dets:
category_id = layout_det["category_id"]
if category_id in allow_category_id_list:
span = {"bbox": layout_det["bbox"], "score": layout_det["score"]}
if category_id == 3:
span["type"] = ContentType.Image
elif category_id == 5:
span["type"] = ContentType.Table
elif category_id == 13:
span["content"] = layout_det["latex"]
span["type"] = ContentType.InlineEquation
elif category_id == 14:
span["content"] = layout_det["latex"]
span["type"] = ContentType.InterlineEquation
elif category_id == 15:
span["content"] = layout_det["text"]
span["type"] = ContentType.Text
all_spans.append(span)
return remove_duplicate_spans(all_spans)
def get_page_size(self, page_no: int): # 获取页面宽高
# 获取当前页的page对象
page = self.__docs[page_no]
# 获取当前页的宽高
page_w = page.rect.width
page_h = page.rect.height
return page_w, page_h
def __get_blocks_by_type(
self, type: int, page_no: int, extra_col: list[str] = []
) -> list:
blocks = []
for page_dict in self.__model_list:
layout_dets = page_dict.get("layout_dets", [])
page_info = page_dict.get("page_info", {})
page_number = page_info.get("page_no", -1)
if page_no != page_number:
continue
for item in layout_dets:
category_id = item.get("category_id", -1)
bbox = item.get("bbox", None)
if category_id == type:
block = {
"bbox": bbox,
"score": item.get("score"),
}
for col in extra_col:
block[col] = item.get(col, None)
blocks.append(block)
return blocks
def get_model_list(self, page_no):
return self.__model_list[page_no]
if __name__ == "__main__":
drw = DiskReaderWriter(r"D:/project/20231108code-clean")
if 0:
pdf_file_path = r"linshixuqiu\19983-00.pdf"
model_file_path = r"linshixuqiu\19983-00_new.json"
pdf_bytes = drw.read(pdf_file_path, AbsReaderWriter.MODE_BIN)
model_json_txt = drw.read(model_file_path, AbsReaderWriter.MODE_TXT)
model_list = json.loads(model_json_txt)
write_path = r"D:\project\20231108code-clean\linshixuqiu\19983-00"
img_bucket_path = "imgs"
img_writer = DiskReaderWriter(join_path(write_path, img_bucket_path))
pdf_docs = fitz.open("pdf", pdf_bytes)
magic_model = MagicModel(model_list, pdf_docs)
if 1:
model_list = json.loads(
drw.read("/opt/data/pdf/20240418/j.chroma.2009.03.042.json")
)
pdf_bytes = drw.read(
"/opt/data/pdf/20240418/j.chroma.2009.03.042.pdf", AbsReaderWriter.MODE_BIN
)
pdf_docs = fitz.open("pdf", pdf_bytes)
magic_model = MagicModel(model_list, pdf_docs)
for i in range(7):
print(magic_model.get_imgs(i))
|