File size: 8,651 Bytes
240e0a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
from loguru import logger
import os
try:
    import cv2
    import yaml
    import time
    import argparse
    import numpy as np
    import torch

    from paddleocr import draw_ocr
    from PIL import Image
    from torchvision import transforms
    from torch.utils.data import Dataset, DataLoader
    from ultralytics import YOLO
    from unimernet.common.config import Config
    import unimernet.tasks as tasks
    from unimernet.processors import load_processor

    from magic_pdf.model.pek_sub_modules.layoutlmv3.model_init import Layoutlmv3_Predictor
    from magic_pdf.model.pek_sub_modules.post_process import get_croped_image, latex_rm_whitespace
    from magic_pdf.model.pek_sub_modules.self_modify import ModifiedPaddleOCR
except ImportError:
    logger.error('Required dependency not installed, please install by \n"pip install magic-pdf[full-cpu] detectron2 --extra-index-url https://myhloli.github.io/wheels/"')
    exit(1)


def mfd_model_init(weight):
    mfd_model = YOLO(weight)
    return mfd_model


def mfr_model_init(weight_dir, cfg_path, _device_='cpu'):
    args = argparse.Namespace(cfg_path=cfg_path, options=None)
    cfg = Config(args)
    cfg.config.model.pretrained = os.path.join(weight_dir, "pytorch_model.bin")
    cfg.config.model.model_config.model_name = weight_dir
    cfg.config.model.tokenizer_config.path = weight_dir
    task = tasks.setup_task(cfg)
    model = task.build_model(cfg)
    model = model.to(_device_)
    vis_processor = load_processor('formula_image_eval', cfg.config.datasets.formula_rec_eval.vis_processor.eval)
    return model, vis_processor


def layout_model_init(weight, config_file, device):
    model = Layoutlmv3_Predictor(weight, config_file, device)
    return model


class MathDataset(Dataset):
    def __init__(self, image_paths, transform=None):
        self.image_paths = image_paths
        self.transform = transform

    def __len__(self):
        return len(self.image_paths)

    def __getitem__(self, idx):
        # if not pil image, then convert to pil image
        if isinstance(self.image_paths[idx], str):
            raw_image = Image.open(self.image_paths[idx])
        else:
            raw_image = self.image_paths[idx]
        if self.transform:
            image = self.transform(raw_image)
            return image


class CustomPEKModel:

    def __init__(self, ocr: bool = False, show_log: bool = False, **kwargs):
        """
        ======== model init ========
        """
        # 获取当前文件(即 pdf_extract_kit.py)的绝对路径
        current_file_path = os.path.abspath(__file__)
        # 获取当前文件所在的目录(model)
        current_dir = os.path.dirname(current_file_path)
        # 上一级目录(magic_pdf)
        root_dir = os.path.dirname(current_dir)
        # model_config目录
        model_config_dir = os.path.join(root_dir, 'resources', 'model_config')
        # 构建 model_configs.yaml 文件的完整路径
        config_path = os.path.join(model_config_dir, 'model_configs.yaml')
        with open(config_path, "r") as f:
            self.configs = yaml.load(f, Loader=yaml.FullLoader)
        # 初始化解析配置
        self.apply_layout = kwargs.get("apply_layout", self.configs["config"]["layout"])
        self.apply_formula = kwargs.get("apply_formula", self.configs["config"]["formula"])
        self.apply_ocr = ocr
        logger.info(
            "DocAnalysis init, this may take some times. apply_layout: {}, apply_formula: {}, apply_ocr: {}".format(
                self.apply_layout, self.apply_formula, self.apply_ocr
            )
        )
        assert self.apply_layout, "DocAnalysis must contain layout model."
        # 初始化解析方案
        self.device = kwargs.get("device", self.configs["config"]["device"])
        logger.info("using device: {}".format(self.device))
        models_dir = kwargs.get("models_dir", os.path.join(root_dir, "resources", "models"))

        # 初始化公式识别
        if self.apply_formula:
            # 初始化公式检测模型
            self.mfd_model = mfd_model_init(str(os.path.join(models_dir, self.configs["weights"]["mfd"])))

            # 初始化公式解析模型
            mfr_weight_dir = str(os.path.join(models_dir, self.configs["weights"]["mfr"]))
            mfr_cfg_path = str(os.path.join(model_config_dir, "UniMERNet", "demo.yaml"))
            self.mfr_model, mfr_vis_processors = mfr_model_init(mfr_weight_dir, mfr_cfg_path, _device_=self.device)
            self.mfr_transform = transforms.Compose([mfr_vis_processors, ])

        # 初始化layout模型
        self.layout_model = Layoutlmv3_Predictor(
            str(os.path.join(models_dir, self.configs['weights']['layout'])),
            str(os.path.join(model_config_dir, "layoutlmv3", "layoutlmv3_base_inference.yaml")),
            device=self.device
        )
        # 初始化ocr
        if self.apply_ocr:
            self.ocr_model = ModifiedPaddleOCR(show_log=show_log)

        logger.info('DocAnalysis init done!')

    def __call__(self, image):

        latex_filling_list = []
        mf_image_list = []

        # layout检测
        layout_start = time.time()
        layout_res = self.layout_model(image, ignore_catids=[])
        layout_cost = round(time.time() - layout_start, 2)
        logger.info(f"layout detection cost: {layout_cost}")

        # 公式检测
        mfd_res = self.mfd_model.predict(image, imgsz=1888, conf=0.25, iou=0.45, verbose=True)[0]
        for xyxy, conf, cla in zip(mfd_res.boxes.xyxy.cpu(), mfd_res.boxes.conf.cpu(), mfd_res.boxes.cls.cpu()):
            xmin, ymin, xmax, ymax = [int(p.item()) for p in xyxy]
            new_item = {
                'category_id': 13 + int(cla.item()),
                'poly': [xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax],
                'score': round(float(conf.item()), 2),
                'latex': '',
            }
            layout_res.append(new_item)
            latex_filling_list.append(new_item)
            bbox_img = get_croped_image(Image.fromarray(image), [xmin, ymin, xmax, ymax])
            mf_image_list.append(bbox_img)

        # 公式识别
        mfr_start = time.time()
        dataset = MathDataset(mf_image_list, transform=self.mfr_transform)
        dataloader = DataLoader(dataset, batch_size=64, num_workers=0)
        mfr_res = []
        for mf_img in dataloader:
            mf_img = mf_img.to(self.device)
            output = self.mfr_model.generate({'image': mf_img})
            mfr_res.extend(output['pred_str'])
        for res, latex in zip(latex_filling_list, mfr_res):
            res['latex'] = latex_rm_whitespace(latex)
        mfr_cost = round(time.time() - mfr_start, 2)
        logger.info(f"formula nums: {len(mf_image_list)}, mfr time: {mfr_cost}")

        # ocr识别
        if self.apply_ocr:
            ocr_start = time.time()
            pil_img = Image.fromarray(image)
            single_page_mfdetrec_res = []
            for res in layout_res:
                if int(res['category_id']) in [13, 14]:
                    xmin, ymin = int(res['poly'][0]), int(res['poly'][1])
                    xmax, ymax = int(res['poly'][4]), int(res['poly'][5])
                    single_page_mfdetrec_res.append({
                        "bbox": [xmin, ymin, xmax, ymax],
                    })
            for res in layout_res:
                if int(res['category_id']) in [0, 1, 2, 4, 6, 7]:  # 需要进行ocr的类别
                    xmin, ymin = int(res['poly'][0]), int(res['poly'][1])
                    xmax, ymax = int(res['poly'][4]), int(res['poly'][5])
                    crop_box = (xmin, ymin, xmax, ymax)
                    cropped_img = Image.new('RGB', pil_img.size, 'white')
                    cropped_img.paste(pil_img.crop(crop_box), crop_box)
                    cropped_img = cv2.cvtColor(np.asarray(cropped_img), cv2.COLOR_RGB2BGR)
                    ocr_res = self.ocr_model.ocr(cropped_img, mfd_res=single_page_mfdetrec_res)[0]
                    if ocr_res:
                        for box_ocr_res in ocr_res:
                            p1, p2, p3, p4 = box_ocr_res[0]
                            text, score = box_ocr_res[1]
                            layout_res.append({
                                'category_id': 15,
                                'poly': p1 + p2 + p3 + p4,
                                'score': round(score, 2),
                                'text': text,
                            })
            ocr_cost = round(time.time() - ocr_start, 2)
            logger.info(f"ocr cost: {ocr_cost}")

        return layout_res