File size: 8,651 Bytes
240e0a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
from loguru import logger
import os
try:
import cv2
import yaml
import time
import argparse
import numpy as np
import torch
from paddleocr import draw_ocr
from PIL import Image
from torchvision import transforms
from torch.utils.data import Dataset, DataLoader
from ultralytics import YOLO
from unimernet.common.config import Config
import unimernet.tasks as tasks
from unimernet.processors import load_processor
from magic_pdf.model.pek_sub_modules.layoutlmv3.model_init import Layoutlmv3_Predictor
from magic_pdf.model.pek_sub_modules.post_process import get_croped_image, latex_rm_whitespace
from magic_pdf.model.pek_sub_modules.self_modify import ModifiedPaddleOCR
except ImportError:
logger.error('Required dependency not installed, please install by \n"pip install magic-pdf[full-cpu] detectron2 --extra-index-url https://myhloli.github.io/wheels/"')
exit(1)
def mfd_model_init(weight):
mfd_model = YOLO(weight)
return mfd_model
def mfr_model_init(weight_dir, cfg_path, _device_='cpu'):
args = argparse.Namespace(cfg_path=cfg_path, options=None)
cfg = Config(args)
cfg.config.model.pretrained = os.path.join(weight_dir, "pytorch_model.bin")
cfg.config.model.model_config.model_name = weight_dir
cfg.config.model.tokenizer_config.path = weight_dir
task = tasks.setup_task(cfg)
model = task.build_model(cfg)
model = model.to(_device_)
vis_processor = load_processor('formula_image_eval', cfg.config.datasets.formula_rec_eval.vis_processor.eval)
return model, vis_processor
def layout_model_init(weight, config_file, device):
model = Layoutlmv3_Predictor(weight, config_file, device)
return model
class MathDataset(Dataset):
def __init__(self, image_paths, transform=None):
self.image_paths = image_paths
self.transform = transform
def __len__(self):
return len(self.image_paths)
def __getitem__(self, idx):
# if not pil image, then convert to pil image
if isinstance(self.image_paths[idx], str):
raw_image = Image.open(self.image_paths[idx])
else:
raw_image = self.image_paths[idx]
if self.transform:
image = self.transform(raw_image)
return image
class CustomPEKModel:
def __init__(self, ocr: bool = False, show_log: bool = False, **kwargs):
"""
======== model init ========
"""
# 获取当前文件(即 pdf_extract_kit.py)的绝对路径
current_file_path = os.path.abspath(__file__)
# 获取当前文件所在的目录(model)
current_dir = os.path.dirname(current_file_path)
# 上一级目录(magic_pdf)
root_dir = os.path.dirname(current_dir)
# model_config目录
model_config_dir = os.path.join(root_dir, 'resources', 'model_config')
# 构建 model_configs.yaml 文件的完整路径
config_path = os.path.join(model_config_dir, 'model_configs.yaml')
with open(config_path, "r") as f:
self.configs = yaml.load(f, Loader=yaml.FullLoader)
# 初始化解析配置
self.apply_layout = kwargs.get("apply_layout", self.configs["config"]["layout"])
self.apply_formula = kwargs.get("apply_formula", self.configs["config"]["formula"])
self.apply_ocr = ocr
logger.info(
"DocAnalysis init, this may take some times. apply_layout: {}, apply_formula: {}, apply_ocr: {}".format(
self.apply_layout, self.apply_formula, self.apply_ocr
)
)
assert self.apply_layout, "DocAnalysis must contain layout model."
# 初始化解析方案
self.device = kwargs.get("device", self.configs["config"]["device"])
logger.info("using device: {}".format(self.device))
models_dir = kwargs.get("models_dir", os.path.join(root_dir, "resources", "models"))
# 初始化公式识别
if self.apply_formula:
# 初始化公式检测模型
self.mfd_model = mfd_model_init(str(os.path.join(models_dir, self.configs["weights"]["mfd"])))
# 初始化公式解析模型
mfr_weight_dir = str(os.path.join(models_dir, self.configs["weights"]["mfr"]))
mfr_cfg_path = str(os.path.join(model_config_dir, "UniMERNet", "demo.yaml"))
self.mfr_model, mfr_vis_processors = mfr_model_init(mfr_weight_dir, mfr_cfg_path, _device_=self.device)
self.mfr_transform = transforms.Compose([mfr_vis_processors, ])
# 初始化layout模型
self.layout_model = Layoutlmv3_Predictor(
str(os.path.join(models_dir, self.configs['weights']['layout'])),
str(os.path.join(model_config_dir, "layoutlmv3", "layoutlmv3_base_inference.yaml")),
device=self.device
)
# 初始化ocr
if self.apply_ocr:
self.ocr_model = ModifiedPaddleOCR(show_log=show_log)
logger.info('DocAnalysis init done!')
def __call__(self, image):
latex_filling_list = []
mf_image_list = []
# layout检测
layout_start = time.time()
layout_res = self.layout_model(image, ignore_catids=[])
layout_cost = round(time.time() - layout_start, 2)
logger.info(f"layout detection cost: {layout_cost}")
# 公式检测
mfd_res = self.mfd_model.predict(image, imgsz=1888, conf=0.25, iou=0.45, verbose=True)[0]
for xyxy, conf, cla in zip(mfd_res.boxes.xyxy.cpu(), mfd_res.boxes.conf.cpu(), mfd_res.boxes.cls.cpu()):
xmin, ymin, xmax, ymax = [int(p.item()) for p in xyxy]
new_item = {
'category_id': 13 + int(cla.item()),
'poly': [xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax],
'score': round(float(conf.item()), 2),
'latex': '',
}
layout_res.append(new_item)
latex_filling_list.append(new_item)
bbox_img = get_croped_image(Image.fromarray(image), [xmin, ymin, xmax, ymax])
mf_image_list.append(bbox_img)
# 公式识别
mfr_start = time.time()
dataset = MathDataset(mf_image_list, transform=self.mfr_transform)
dataloader = DataLoader(dataset, batch_size=64, num_workers=0)
mfr_res = []
for mf_img in dataloader:
mf_img = mf_img.to(self.device)
output = self.mfr_model.generate({'image': mf_img})
mfr_res.extend(output['pred_str'])
for res, latex in zip(latex_filling_list, mfr_res):
res['latex'] = latex_rm_whitespace(latex)
mfr_cost = round(time.time() - mfr_start, 2)
logger.info(f"formula nums: {len(mf_image_list)}, mfr time: {mfr_cost}")
# ocr识别
if self.apply_ocr:
ocr_start = time.time()
pil_img = Image.fromarray(image)
single_page_mfdetrec_res = []
for res in layout_res:
if int(res['category_id']) in [13, 14]:
xmin, ymin = int(res['poly'][0]), int(res['poly'][1])
xmax, ymax = int(res['poly'][4]), int(res['poly'][5])
single_page_mfdetrec_res.append({
"bbox": [xmin, ymin, xmax, ymax],
})
for res in layout_res:
if int(res['category_id']) in [0, 1, 2, 4, 6, 7]: # 需要进行ocr的类别
xmin, ymin = int(res['poly'][0]), int(res['poly'][1])
xmax, ymax = int(res['poly'][4]), int(res['poly'][5])
crop_box = (xmin, ymin, xmax, ymax)
cropped_img = Image.new('RGB', pil_img.size, 'white')
cropped_img.paste(pil_img.crop(crop_box), crop_box)
cropped_img = cv2.cvtColor(np.asarray(cropped_img), cv2.COLOR_RGB2BGR)
ocr_res = self.ocr_model.ocr(cropped_img, mfd_res=single_page_mfdetrec_res)[0]
if ocr_res:
for box_ocr_res in ocr_res:
p1, p2, p3, p4 = box_ocr_res[0]
text, score = box_ocr_res[1]
layout_res.append({
'category_id': 15,
'poly': p1 + p2 + p3 + p4,
'score': round(score, 2),
'text': text,
})
ocr_cost = round(time.time() - ocr_start, 2)
logger.info(f"ocr cost: {ocr_cost}")
return layout_res
|