File size: 10,584 Bytes
240e0a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import time
from loguru import logger
from magic_pdf.libs.commons import fitz, get_delta_time
from magic_pdf.layout.layout_sort import get_bboxes_layout, LAYOUT_UNPROC, get_columns_cnt_of_layout
from magic_pdf.libs.convert_utils import dict_to_list
from magic_pdf.libs.drop_reason import DropReason
from magic_pdf.libs.hash_utils import compute_md5
from magic_pdf.libs.math import float_equal
from magic_pdf.libs.ocr_content_type import ContentType
from magic_pdf.model.magic_model import MagicModel
from magic_pdf.para.para_split_v2 import para_split
from magic_pdf.pre_proc.citationmarker_remove import remove_citation_marker
from magic_pdf.pre_proc.construct_page_dict import ocr_construct_page_component_v2
from magic_pdf.pre_proc.cut_image import ocr_cut_image_and_table
from magic_pdf.pre_proc.equations_replace import remove_chars_in_text_blocks, replace_equations_in_textblock, \
combine_chars_to_pymudict
from magic_pdf.pre_proc.ocr_detect_all_bboxes import ocr_prepare_bboxes_for_layout_split
from magic_pdf.pre_proc.ocr_dict_merge import sort_blocks_by_layout, fill_spans_in_blocks, fix_block_spans, \
fix_discarded_block
from magic_pdf.pre_proc.ocr_span_list_modify import remove_overlaps_min_spans, get_qa_need_list_v2, \
remove_overlaps_low_confidence_spans
from magic_pdf.pre_proc.resolve_bbox_conflict import check_useful_block_horizontal_overlap
def remove_horizontal_overlap_block_which_smaller(all_bboxes):
useful_blocks = []
for bbox in all_bboxes:
useful_blocks.append({
"bbox": bbox[:4]
})
is_useful_block_horz_overlap, smaller_bbox, bigger_bbox = check_useful_block_horizontal_overlap(useful_blocks)
if is_useful_block_horz_overlap:
logger.warning(
f"skip this page, reason: {DropReason.USEFUL_BLOCK_HOR_OVERLAP}, smaller bbox is {smaller_bbox}, bigger bbox is {bigger_bbox}")
for bbox in all_bboxes.copy():
if smaller_bbox == bbox[:4]:
all_bboxes.remove(bbox)
return is_useful_block_horz_overlap, all_bboxes
def txt_spans_extract(pdf_page, inline_equations, interline_equations):
text_raw_blocks = pdf_page.get_text("dict", flags=fitz.TEXTFLAGS_TEXT)["blocks"]
char_level_text_blocks = pdf_page.get_text("rawdict", flags=fitz.TEXTFLAGS_TEXT)[
"blocks"
]
text_blocks = combine_chars_to_pymudict(text_raw_blocks, char_level_text_blocks)
text_blocks = replace_equations_in_textblock(
text_blocks, inline_equations, interline_equations
)
text_blocks = remove_citation_marker(text_blocks)
text_blocks = remove_chars_in_text_blocks(text_blocks)
spans = []
for v in text_blocks:
for line in v["lines"]:
for span in line["spans"]:
bbox = span["bbox"]
if float_equal(bbox[0], bbox[2]) or float_equal(bbox[1], bbox[3]):
continue
if span.get('type') not in (ContentType.InlineEquation, ContentType.InterlineEquation):
spans.append(
{
"bbox": list(span["bbox"]),
"content": span["text"],
"type": ContentType.Text,
"score": 1.0,
}
)
return spans
def replace_text_span(pymu_spans, ocr_spans):
return list(filter(lambda x: x["type"] != ContentType.Text, ocr_spans)) + pymu_spans
def parse_page_core(pdf_docs, magic_model, page_id, pdf_bytes_md5, imageWriter, parse_mode):
need_drop = False
drop_reason = []
'''从magic_model对象中获取后面会用到的区块信息'''
img_blocks = magic_model.get_imgs(page_id)
table_blocks = magic_model.get_tables(page_id)
discarded_blocks = magic_model.get_discarded(page_id)
text_blocks = magic_model.get_text_blocks(page_id)
title_blocks = magic_model.get_title_blocks(page_id)
inline_equations, interline_equations, interline_equation_blocks = magic_model.get_equations(page_id)
page_w, page_h = magic_model.get_page_size(page_id)
spans = magic_model.get_all_spans(page_id)
'''根据parse_mode,构造spans'''
if parse_mode == "txt":
"""ocr 中文本类的 span 用 pymu spans 替换!"""
pymu_spans = txt_spans_extract(
pdf_docs[page_id], inline_equations, interline_equations
)
spans = replace_text_span(pymu_spans, spans)
elif parse_mode == "ocr":
pass
else:
raise Exception("parse_mode must be txt or ocr")
'''删除重叠spans中置信度较低的那些'''
spans, dropped_spans_by_confidence = remove_overlaps_low_confidence_spans(spans)
'''删除重叠spans中较小的那些'''
spans, dropped_spans_by_span_overlap = remove_overlaps_min_spans(spans)
'''对image和table截图'''
spans = ocr_cut_image_and_table(spans, pdf_docs[page_id], page_id, pdf_bytes_md5, imageWriter)
'''将所有区块的bbox整理到一起'''
# @todo interline_equation_blocks参数不够准,后面切换到interline_equations上
if len(interline_equation_blocks) > 0:
all_bboxes, all_discarded_blocks, drop_reasons = ocr_prepare_bboxes_for_layout_split(
img_blocks, table_blocks, discarded_blocks, text_blocks, title_blocks,
interline_equation_blocks, page_w, page_h)
else:
all_bboxes, all_discarded_blocks, drop_reasons = ocr_prepare_bboxes_for_layout_split(
img_blocks, table_blocks, discarded_blocks, text_blocks, title_blocks,
interline_equations, page_w, page_h)
if len(drop_reasons) > 0:
need_drop = True
drop_reason.append(DropReason.OVERLAP_BLOCKS_CAN_NOT_SEPARATION)
'''先处理不需要排版的discarded_blocks'''
discarded_block_with_spans, spans = fill_spans_in_blocks(all_discarded_blocks, spans, 0.4)
fix_discarded_blocks = fix_discarded_block(discarded_block_with_spans)
'''如果当前页面没有bbox则跳过'''
if len(all_bboxes) == 0:
logger.warning(f"skip this page, not found useful bbox, page_id: {page_id}")
return ocr_construct_page_component_v2([], [], page_id, page_w, page_h, [],
[], [], interline_equations, fix_discarded_blocks,
need_drop, drop_reason)
"""在切分之前,先检查一下bbox是否有左右重叠的情况,如果有,那么就认为这个pdf暂时没有能力处理好,这种左右重叠的情况大概率是由于pdf里的行间公式、表格没有被正确识别出来造成的 """
while True: # 循环检查左右重叠的情况,如果存在就删除掉较小的那个bbox,直到不存在左右重叠的情况
is_useful_block_horz_overlap, all_bboxes = remove_horizontal_overlap_block_which_smaller(all_bboxes)
if is_useful_block_horz_overlap:
need_drop = True
drop_reason.append(DropReason.USEFUL_BLOCK_HOR_OVERLAP)
else:
break
'''根据区块信息计算layout'''
page_boundry = [0, 0, page_w, page_h]
layout_bboxes, layout_tree = get_bboxes_layout(all_bboxes, page_boundry, page_id)
if len(text_blocks) > 0 and len(all_bboxes) > 0 and len(layout_bboxes) == 0:
logger.warning(
f"skip this page, page_id: {page_id}, reason: {DropReason.CAN_NOT_DETECT_PAGE_LAYOUT}")
need_drop = True
drop_reason.append(DropReason.CAN_NOT_DETECT_PAGE_LAYOUT)
"""以下去掉复杂的布局和超过2列的布局"""
if any([lay["layout_label"] == LAYOUT_UNPROC for lay in layout_bboxes]): # 复杂的布局
logger.warning(
f"skip this page, page_id: {page_id}, reason: {DropReason.COMPLICATED_LAYOUT}")
need_drop = True
drop_reason.append(DropReason.COMPLICATED_LAYOUT)
layout_column_width = get_columns_cnt_of_layout(layout_tree)
if layout_column_width > 2: # 去掉超过2列的布局pdf
logger.warning(
f"skip this page, page_id: {page_id}, reason: {DropReason.TOO_MANY_LAYOUT_COLUMNS}")
need_drop = True
drop_reason.append(DropReason.TOO_MANY_LAYOUT_COLUMNS)
'''根据layout顺序,对当前页面所有需要留下的block进行排序'''
sorted_blocks = sort_blocks_by_layout(all_bboxes, layout_bboxes)
'''将span填入排好序的blocks中'''
block_with_spans, spans = fill_spans_in_blocks(sorted_blocks, spans, 0.6)
'''对block进行fix操作'''
fix_blocks = fix_block_spans(block_with_spans, img_blocks, table_blocks)
'''获取QA需要外置的list'''
images, tables, interline_equations = get_qa_need_list_v2(fix_blocks)
'''构造pdf_info_dict'''
page_info = ocr_construct_page_component_v2(fix_blocks, layout_bboxes, page_id, page_w, page_h, layout_tree,
images, tables, interline_equations, fix_discarded_blocks,
need_drop, drop_reason)
return page_info
def pdf_parse_union(pdf_bytes,
model_list,
imageWriter,
parse_mode,
start_page_id=0,
end_page_id=None,
debug_mode=False,
):
pdf_bytes_md5 = compute_md5(pdf_bytes)
pdf_docs = fitz.open("pdf", pdf_bytes)
'''初始化空的pdf_info_dict'''
pdf_info_dict = {}
'''用model_list和docs对象初始化magic_model'''
magic_model = MagicModel(model_list, pdf_docs)
'''根据输入的起始范围解析pdf'''
end_page_id = end_page_id if end_page_id else len(pdf_docs) - 1
'''初始化启动时间'''
start_time = time.time()
for page_id in range(start_page_id, end_page_id + 1):
'''debug时输出每页解析的耗时'''
if debug_mode:
time_now = time.time()
logger.info(
f"page_id: {page_id}, last_page_cost_time: {get_delta_time(start_time)}"
)
start_time = time_now
'''解析pdf中的每一页'''
page_info = parse_page_core(pdf_docs, magic_model, page_id, pdf_bytes_md5, imageWriter, parse_mode)
pdf_info_dict[f"page_{page_id}"] = page_info
"""分段"""
para_split(pdf_info_dict, debug_mode=debug_mode)
"""dict转list"""
pdf_info_list = dict_to_list(pdf_info_dict)
new_pdf_info_dict = {
"pdf_info": pdf_info_list,
}
return new_pdf_info_dict
if __name__ == '__main__':
pass
|