MinerU / magic_pdf /layout /layout_sort.py
derful's picture
Upload folder using huggingface_hub
240e0a0 verified
"""
对pdf上的box进行layout识别,并对内部组成的box进行排序
"""
from loguru import logger
from magic_pdf.layout.bbox_sort import CONTENT_IDX, CONTENT_TYPE_IDX, X0_EXT_IDX, X0_IDX, X1_EXT_IDX, X1_IDX, Y0_EXT_IDX, Y0_IDX, Y1_EXT_IDX, Y1_IDX, paper_bbox_sort
from magic_pdf.layout.layout_det_utils import find_all_left_bbox_direct, find_all_right_bbox_direct, find_bottom_bbox_direct_from_left_edge, find_bottom_bbox_direct_from_right_edge, find_top_bbox_direct_from_left_edge, find_top_bbox_direct_from_right_edge, find_all_top_bbox_direct, find_all_bottom_bbox_direct, get_left_edge_bboxes, get_right_edge_bboxes
from magic_pdf.libs.boxbase import get_bbox_in_boundry
LAYOUT_V = "V"
LAYOUT_H = "H"
LAYOUT_UNPROC = "U"
LAYOUT_BAD = "B"
def _is_single_line_text(bbox):
"""
检查bbox里面的文字是否只有一行
"""
return True # TODO
box_type = bbox[CONTENT_TYPE_IDX]
if box_type != 'text':
return False
paras = bbox[CONTENT_IDX]["paras"]
text_content = ""
for para_id, para in paras.items(): # 拼装内部的段落文本
is_title = para['is_title']
if is_title!=0:
text_content += f"## {para['text']}"
else:
text_content += para["text"]
text_content += "\n\n"
return bbox[CONTENT_TYPE_IDX] == 'text' and len(text_content.split("\n\n")) <= 1
def _horizontal_split(bboxes:list, boundry:tuple, avg_font_size=20)-> list:
"""
对bboxes进行水平切割
方法是:找到左侧和右侧都没有被直接遮挡的box,然后进行扩展,之后进行切割
return:
返回几个大的Layout区域 [[x0, y0, x1, y1, "h|u|v"], ], h代表水平,u代表未探测的,v代表垂直布局
"""
sorted_layout_blocks = [] # 这是要最终返回的值
bound_x0, bound_y0, bound_x1, bound_y1 = boundry
all_bboxes = get_bbox_in_boundry(bboxes, boundry)
#all_bboxes = paper_bbox_sort(all_bboxes, abs(bound_x1-bound_x0), abs(bound_y1-bound_x0)) # 大致拍下序, 这个是基于直接遮挡的。
"""
首先在水平方向上扩展独占一行的bbox
"""
last_h_split_line_y1 = bound_y0 #记录下上次的水平分割线
for i, bbox in enumerate(all_bboxes):
left_nearest_bbox = find_all_left_bbox_direct(bbox, all_bboxes) # 非扩展线
right_nearest_bbox = find_all_right_bbox_direct(bbox, all_bboxes)
if left_nearest_bbox is None and right_nearest_bbox is None: # 独占一行
"""
然而,如果只是孤立的一行文字,那么就还要满足以下几个条件才可以:
1. bbox和中心线相交。或者
2. 上方或者下方也存在同类水平的独占一行的bbox。 或者
3. TODO 加强条件:这个bbox上方和下方是同一列column,那么就不能算作独占一行
"""
# 先检查这个bbox里是否只包含一行文字
is_single_line = _is_single_line_text(bbox)
"""
这里有个点需要注意,当页面内容不是居中的时候,第一次调用传递的是page的boundry,这个时候mid_x就不是中心线了.
所以这里计算出最紧致的boundry,然后再计算mid_x
"""
boundry_real_x0, boundry_real_x1 = min([bbox[X0_IDX] for bbox in all_bboxes]), max([bbox[X1_IDX] for bbox in all_bboxes])
mid_x = (boundry_real_x0+boundry_real_x1)/2
# 检查这个box是否内容在中心线有交
# 必须跨过去2个字符的宽度
is_cross_boundry_mid_line = min(mid_x-bbox[X0_IDX], bbox[X1_IDX]-mid_x) > avg_font_size*2
"""
检查条件2
"""
is_belong_to_col = False
"""
检查是否能被上方col吸收,方法是:
1. 上方非空且不是独占一行的,并且
2. 从上个水平分割的最大y=y1开始到当前bbox,最左侧的bbox的[min_x0, max_x1],能够覆盖当前box的[x0, x1]
"""
"""
以迭代的方式向上找,查找范围是[bound_x0, last_h_sp, bound_x1, bbox[Y0_IDX]]
"""
#先确定上方的y0, y0
b_y0, b_y1 = last_h_split_line_y1, bbox[Y0_IDX]
#然后从box开始逐个向上找到所有与box在x上有交集的box
box_to_check = [bound_x0, b_y0, bound_x1, b_y1]
bbox_in_bound_check = get_bbox_in_boundry(all_bboxes, box_to_check)
bboxes_on_top = []
virtual_box = bbox
while True:
b_on_top = find_all_top_bbox_direct(virtual_box, bbox_in_bound_check)
if b_on_top is not None:
bboxes_on_top.append(b_on_top)
virtual_box = [min([virtual_box[X0_IDX], b_on_top[X0_IDX]]), min(virtual_box[Y0_IDX], b_on_top[Y0_IDX]), max([virtual_box[X1_IDX], b_on_top[X1_IDX]]), b_y1]
else:
break
# 随后确定这些box的最小x0, 最大x1
if len(bboxes_on_top)>0 and len(bboxes_on_top) != len(bbox_in_bound_check):# virtual_box可能会膨胀到占满整个区域,这实际上就不能属于一个col了。
min_x0, max_x1 = virtual_box[X0_IDX], virtual_box[X1_IDX]
# 然后采用一种比较粗糙的方法,看min_x0,max_x1是否与位于[bound_x0, last_h_sp, bound_x1, bbox[Y0_IDX]]之间的box有相交
if not any([b[X0_IDX] <= min_x0-1 <= b[X1_IDX] or b[X0_IDX] <= max_x1+1 <= b[X1_IDX] for b in bbox_in_bound_check]):
# 其上,下都不能被扩展成行,暂时只检查一下上方 TODO
top_nearest_bbox = find_all_top_bbox_direct(bbox, bboxes)
bottom_nearest_bbox = find_all_bottom_bbox_direct(bbox, bboxes)
if not any([
top_nearest_bbox is not None and (find_all_left_bbox_direct(top_nearest_bbox, bboxes) is None and find_all_right_bbox_direct(top_nearest_bbox, bboxes) is None),
bottom_nearest_bbox is not None and (find_all_left_bbox_direct(bottom_nearest_bbox, bboxes) is None and find_all_right_bbox_direct(bottom_nearest_bbox, bboxes) is None),
top_nearest_bbox is None or bottom_nearest_bbox is None
]):
is_belong_to_col = True
# 检查是否能被下方col吸收 TODO
"""
这里为什么没有is_cross_boundry_mid_line的条件呢?
确实有些杂志左右两栏宽度不是对称的。
"""
if not is_belong_to_col or is_cross_boundry_mid_line:
bbox[X0_EXT_IDX] = bound_x0
bbox[Y0_EXT_IDX] = bbox[Y0_IDX]
bbox[X1_EXT_IDX] = bound_x1
bbox[Y1_EXT_IDX] = bbox[Y1_IDX]
last_h_split_line_y1 = bbox[Y1_IDX] # 更新这条线
else:
continue
"""
此时独占一行的被成功扩展到指定的边界上,这个时候利用边界条件合并连续的bbox,成为一个group
然后合并所有连续水平方向的bbox.
"""
all_bboxes.sort(key=lambda x: x[Y0_IDX])
h_bboxes = []
h_bbox_group = []
for bbox in all_bboxes:
if bbox[X0_EXT_IDX] == bound_x0 and bbox[X1_EXT_IDX] == bound_x1:
h_bbox_group.append(bbox)
else:
if len(h_bbox_group)>0:
h_bboxes.append(h_bbox_group)
h_bbox_group = []
# 最后一个group
if len(h_bbox_group)>0:
h_bboxes.append(h_bbox_group)
"""
现在h_bboxes里面是所有的group了,每个group都是一个list
对h_bboxes里的每个group进行计算放回到sorted_layouts里
"""
h_layouts = []
for gp in h_bboxes:
gp.sort(key=lambda x: x[Y0_IDX])
# 然后计算这个group的layout_bbox,也就是最小的x0,y0, 最大的x1,y1
x0, y0, x1, y1 = gp[0][X0_EXT_IDX], gp[0][Y0_EXT_IDX], gp[-1][X1_EXT_IDX], gp[-1][Y1_EXT_IDX]
h_layouts.append([x0, y0, x1, y1, LAYOUT_H]) # 水平的布局
"""
接下来利用这些连续的水平bbox的layout_bbox的y0, y1,从水平上切分开其余的为几个部分
"""
h_split_lines = [bound_y0]
for gp in h_bboxes: # gp是一个list[bbox_list]
y0, y1 = gp[0][1], gp[-1][3]
h_split_lines.append(y0)
h_split_lines.append(y1)
h_split_lines.append(bound_y1)
unsplited_bboxes = []
for i in range(0, len(h_split_lines), 2):
start_y0, start_y1 = h_split_lines[i:i+2]
# 然后找出[start_y0, start_y1]之间的其他bbox,这些组成一个未分割板块
bboxes_in_block = [bbox for bbox in all_bboxes if bbox[Y0_IDX]>=start_y0 and bbox[Y1_IDX]<=start_y1]
unsplited_bboxes.append(bboxes_in_block)
# 接着把未处理的加入到h_layouts里
for bboxes_in_block in unsplited_bboxes:
if len(bboxes_in_block) == 0:
continue
x0, y0, x1, y1 = bound_x0, min([bbox[Y0_IDX] for bbox in bboxes_in_block]), bound_x1, max([bbox[Y1_IDX] for bbox in bboxes_in_block])
h_layouts.append([x0, y0, x1, y1, LAYOUT_UNPROC])
h_layouts.sort(key=lambda x: x[1]) # 按照y0排序, 也就是从上到下的顺序
"""
转换成如下格式返回
"""
for layout in h_layouts:
sorted_layout_blocks.append({
"layout_bbox": layout[:4],
"layout_label":layout[4],
"sub_layout":[],
})
return sorted_layout_blocks
###############################################################################################
#
# 垂直方向的处理
#
#
###############################################################################################
def _vertical_align_split_v1(bboxes:list, boundry:tuple)-> list:
"""
计算垂直方向上的对齐, 并分割bboxes成layout。负责对一列多行的进行列维度分割。
如果不能完全分割,剩余部分作为layout_lable为u的layout返回
-----------------------
| | |
| | |
| | |
| | |
-------------------------
此函数会将:以上布局将会切分出来2列
"""
sorted_layout_blocks = [] # 这是要最终返回的值
new_boundry = [boundry[0], boundry[1], boundry[2], boundry[3]]
v_blocks = []
"""
先从左到右切分
"""
while True:
all_bboxes = get_bbox_in_boundry(bboxes, new_boundry)
left_edge_bboxes = get_left_edge_bboxes(all_bboxes)
if len(left_edge_bboxes) == 0:
break
right_split_line_x1 = max([bbox[X1_IDX] for bbox in left_edge_bboxes])+1
# 然后检查这条线能不与其他bbox的左边界相交或者重合
if any([bbox[X0_IDX] <= right_split_line_x1 <= bbox[X1_IDX] for bbox in all_bboxes]):
# 垂直切分线与某些box发生相交,说明无法完全垂直方向切分。
break
else: # 说明成功分割出一列
# 找到左侧边界最靠左的bbox作为layout的x0
layout_x0 = min([bbox[X0_IDX] for bbox in left_edge_bboxes]) # 这里主要是为了画出来有一定间距
v_blocks.append([layout_x0, new_boundry[1], right_split_line_x1, new_boundry[3], LAYOUT_V])
new_boundry[0] = right_split_line_x1 # 更新边界
"""
再从右到左切, 此时如果还是无法完全切分,那么剩余部分作为layout_lable为u的layout返回
"""
unsplited_block = []
while True:
all_bboxes = get_bbox_in_boundry(bboxes, new_boundry)
right_edge_bboxes = get_right_edge_bboxes(all_bboxes)
if len(right_edge_bboxes) == 0:
break
left_split_line_x0 = min([bbox[X0_IDX] for bbox in right_edge_bboxes])-1
# 然后检查这条线能不与其他bbox的左边界相交或者重合
if any([bbox[X0_IDX] <= left_split_line_x0 <= bbox[X1_IDX] for bbox in all_bboxes]):
# 这里是余下的
unsplited_block.append([new_boundry[0], new_boundry[1], new_boundry[2], new_boundry[3], LAYOUT_UNPROC])
break
else:
# 找到右侧边界最靠右的bbox作为layout的x1
layout_x1 = max([bbox[X1_IDX] for bbox in right_edge_bboxes])
v_blocks.append([left_split_line_x0, new_boundry[1], layout_x1, new_boundry[3], LAYOUT_V])
new_boundry[2] = left_split_line_x0 # 更新右边界
"""
最后拼装成layout格式返回
"""
for block in v_blocks:
sorted_layout_blocks.append({
"layout_bbox": block[:4],
"layout_label":block[4],
"sub_layout":[],
})
for block in unsplited_block:
sorted_layout_blocks.append({
"layout_bbox": block[:4],
"layout_label":block[4],
"sub_layout":[],
})
# 按照x0排序
sorted_layout_blocks.sort(key=lambda x: x['layout_bbox'][0])
return sorted_layout_blocks
def _vertical_align_split_v2(bboxes:list, boundry:tuple)-> list:
"""
改进的 _vertical_align_split算法,原算法会因为第二列的box由于左侧没有遮挡被认为是左侧的一部分,导致整个layout多列被识别为一列。
利用从左上角的box开始向下看的方法,不断扩展w_x0, w_x1,直到不能继续向下扩展,或者到达边界下边界。
"""
sorted_layout_blocks = [] # 这是要最终返回的值
new_boundry = [boundry[0], boundry[1], boundry[2], boundry[3]]
bad_boxes = [] # 被割中的box
v_blocks = []
while True:
all_bboxes = get_bbox_in_boundry(bboxes, new_boundry)
if len(all_bboxes) == 0:
break
left_top_box = min(all_bboxes, key=lambda x: (x[X0_IDX],x[Y0_IDX]))# 这里应该加强,检查一下必须是在第一列的 TODO
start_box = [left_top_box[X0_IDX], left_top_box[Y0_IDX], left_top_box[X1_IDX], left_top_box[Y1_IDX]]
w_x0, w_x1 = left_top_box[X0_IDX], left_top_box[X1_IDX]
"""
然后沿着这个box线向下找最近的那个box, 然后扩展w_x0, w_x1
扩展之后,宽度会增加,随后用x=w_x1来检测在边界内是否有box与相交,如果相交,那么就说明不能再扩展了。
当不能扩展的时候就要看是否到达下边界:
1. 达到,那么更新左边界继续分下一个列
2. 没有达到,那么此时开始从右侧切分进入下面的循环里
"""
while left_top_box is not None: # 向下去找
virtual_box = [w_x0, left_top_box[Y0_IDX], w_x1, left_top_box[Y1_IDX]]
left_top_box = find_bottom_bbox_direct_from_left_edge(virtual_box, all_bboxes)
if left_top_box:
w_x0, w_x1 = min(virtual_box[X0_IDX], left_top_box[X0_IDX]), max([virtual_box[X1_IDX], left_top_box[X1_IDX]])
# 万一这个初始的box在column中间,那么还要向上看
start_box = [w_x0, start_box[Y0_IDX], w_x1, start_box[Y1_IDX]] # 扩展一下宽度更鲁棒
left_top_box = find_top_bbox_direct_from_left_edge(start_box, all_bboxes)
while left_top_box is not None: # 向上去找
virtual_box = [w_x0, left_top_box[Y0_IDX], w_x1, left_top_box[Y1_IDX]]
left_top_box = find_top_bbox_direct_from_left_edge(virtual_box, all_bboxes)
if left_top_box:
w_x0, w_x1 = min(virtual_box[X0_IDX], left_top_box[X0_IDX]), max([virtual_box[X1_IDX], left_top_box[X1_IDX]])
# 检查相交
if any([bbox[X0_IDX] <= w_x1+1 <= bbox[X1_IDX] for bbox in all_bboxes]):
for b in all_bboxes:
if b[X0_IDX] <= w_x1+1 <= b[X1_IDX]:
bad_boxes.append([b[X0_IDX], b[Y0_IDX], b[X1_IDX], b[Y1_IDX]])
break
else: # 说明成功分割出一列
v_blocks.append([w_x0, new_boundry[1], w_x1, new_boundry[3], LAYOUT_V])
new_boundry[0] = w_x1 # 更新边界
"""
接着开始从右上角的box扫描
"""
w_x0 , w_x1 = 0, 0
unsplited_block = []
while True:
all_bboxes = get_bbox_in_boundry(bboxes, new_boundry)
if len(all_bboxes) == 0:
break
# 先找到X1最大的
bbox_list_sorted = sorted(all_bboxes, key=lambda bbox: bbox[X1_IDX], reverse=True)
# Then, find the boxes with the smallest Y0 value
bigest_x1 = bbox_list_sorted[0][X1_IDX]
boxes_with_bigest_x1 = [bbox for bbox in bbox_list_sorted if bbox[X1_IDX] == bigest_x1] # 也就是最靠右的那些
right_top_box = min(boxes_with_bigest_x1, key=lambda bbox: bbox[Y0_IDX]) # y0最小的那个
start_box = [right_top_box[X0_IDX], right_top_box[Y0_IDX], right_top_box[X1_IDX], right_top_box[Y1_IDX]]
w_x0, w_x1 = right_top_box[X0_IDX], right_top_box[X1_IDX]
while right_top_box is not None:
virtual_box = [w_x0, right_top_box[Y0_IDX], w_x1, right_top_box[Y1_IDX]]
right_top_box = find_bottom_bbox_direct_from_right_edge(virtual_box, all_bboxes)
if right_top_box:
w_x0, w_x1 = min([w_x0, right_top_box[X0_IDX]]), max([w_x1, right_top_box[X1_IDX]])
# 在向上扫描
start_box = [w_x0, start_box[Y0_IDX], w_x1, start_box[Y1_IDX]] # 扩展一下宽度更鲁棒
right_top_box = find_top_bbox_direct_from_right_edge(start_box, all_bboxes)
while right_top_box is not None:
virtual_box = [w_x0, right_top_box[Y0_IDX], w_x1, right_top_box[Y1_IDX]]
right_top_box = find_top_bbox_direct_from_right_edge(virtual_box, all_bboxes)
if right_top_box:
w_x0, w_x1 = min([w_x0, right_top_box[X0_IDX]]), max([w_x1, right_top_box[X1_IDX]])
# 检查是否与其他box相交, 垂直切分线与某些box发生相交,说明无法完全垂直方向切分。
if any([bbox[X0_IDX] <= w_x0-1 <= bbox[X1_IDX] for bbox in all_bboxes]):
unsplited_block.append([new_boundry[0], new_boundry[1], new_boundry[2], new_boundry[3], LAYOUT_UNPROC])
for b in all_bboxes:
if b[X0_IDX] <= w_x0-1 <= b[X1_IDX]:
bad_boxes.append([b[X0_IDX], b[Y0_IDX], b[X1_IDX], b[Y1_IDX]])
break
else: # 说明成功分割出一列
v_blocks.append([w_x0, new_boundry[1], w_x1, new_boundry[3], LAYOUT_V])
new_boundry[2] = w_x0
"""转换数据结构"""
for block in v_blocks:
sorted_layout_blocks.append({
"layout_bbox": block[:4],
"layout_label":block[4],
"sub_layout":[],
})
for block in unsplited_block:
sorted_layout_blocks.append({
"layout_bbox": block[:4],
"layout_label":block[4],
"sub_layout":[],
"bad_boxes": bad_boxes # 记录下来,这个box是被割中的
})
# 按照x0排序
sorted_layout_blocks.sort(key=lambda x: x['layout_bbox'][0])
return sorted_layout_blocks
def _try_horizontal_mult_column_split(bboxes:list, boundry:tuple)-> list:
"""
尝试水平切分,如果切分不动,那就当一个BAD_LAYOUT返回
------------------
| | |
------------------
| | | | <- 这里是此函数要切分的场景
------------------
| | |
| | |
"""
pass
def _vertical_split(bboxes:list, boundry:tuple)-> list:
"""
从垂直方向进行切割,分block
这个版本里,如果垂直切分不动,那就当一个BAD_LAYOUT返回
--------------------------
| | |
| | |
| |
这种列是此函数要切分的 -> | |
| |
| | |
| | |
-------------------------
"""
sorted_layout_blocks = [] # 这是要最终返回的值
bound_x0, bound_y0, bound_x1, bound_y1 = boundry
all_bboxes = get_bbox_in_boundry(bboxes, boundry)
"""
all_bboxes = fix_vertical_bbox_pos(all_bboxes) # 垂直方向解覆盖
all_bboxes = fix_hor_bbox_pos(all_bboxes) # 水平解覆盖
这两行代码目前先不执行,因为公式检测,表格检测还不是很成熟,导致非常多的textblock参与了运算,时间消耗太大。
这两行代码的作用是:
如果遇到互相重叠的bbox, 那么会把面积较小的box进行压缩,从而避免重叠。对布局切分来说带来正反馈。
"""
#all_bboxes = paper_bbox_sort(all_bboxes, abs(bound_x1-bound_x0), abs(bound_y1-bound_x0)) # 大致拍下序, 这个是基于直接遮挡的。
"""
首先在垂直方向上扩展独占一行的bbox
"""
for bbox in all_bboxes:
top_nearest_bbox = find_all_top_bbox_direct(bbox, all_bboxes) # 非扩展线
bottom_nearest_bbox = find_all_bottom_bbox_direct(bbox, all_bboxes)
if top_nearest_bbox is None and bottom_nearest_bbox is None and not any([b[X0_IDX]<bbox[X1_IDX]<b[X1_IDX] or b[X0_IDX]<bbox[X0_IDX]<b[X1_IDX] for b in all_bboxes]): # 独占一列, 且不和其他重叠
bbox[X0_EXT_IDX] = bbox[X0_IDX]
bbox[Y0_EXT_IDX] = bound_y0
bbox[X1_EXT_IDX] = bbox[X1_IDX]
bbox[Y1_EXT_IDX] = bound_y1
"""
此时独占一列的被成功扩展到指定的边界上,这个时候利用边界条件合并连续的bbox,成为一个group
然后合并所有连续垂直方向的bbox.
"""
all_bboxes.sort(key=lambda x: x[X0_IDX])
# fix: 这里水平方向的列不要合并成一个行,因为需要保证返回给下游的最小block,总是可以无脑从上到下阅读文字。
v_bboxes = []
for box in all_bboxes:
if box[Y0_EXT_IDX] == bound_y0 and box[Y1_EXT_IDX] == bound_y1:
v_bboxes.append(box)
"""
现在v_bboxes里面是所有的group了,每个group都是一个list
对v_bboxes里的每个group进行计算放回到sorted_layouts里
"""
v_layouts = []
for vbox in v_bboxes:
#gp.sort(key=lambda x: x[X0_IDX])
# 然后计算这个group的layout_bbox,也就是最小的x0,y0, 最大的x1,y1
x0, y0, x1, y1 = vbox[X0_EXT_IDX], vbox[Y0_EXT_IDX], vbox[X1_EXT_IDX], vbox[Y1_EXT_IDX]
v_layouts.append([x0, y0, x1, y1, LAYOUT_V]) # 垂直的布局
"""
接下来利用这些连续的垂直bbox的layout_bbox的x0, x1,从垂直上切分开其余的为几个部分
"""
v_split_lines = [bound_x0]
for gp in v_bboxes:
x0, x1 = gp[X0_IDX], gp[X1_IDX]
v_split_lines.append(x0)
v_split_lines.append(x1)
v_split_lines.append(bound_x1)
unsplited_bboxes = []
for i in range(0, len(v_split_lines), 2):
start_x0, start_x1 = v_split_lines[i:i+2]
# 然后找出[start_x0, start_x1]之间的其他bbox,这些组成一个未分割板块
bboxes_in_block = [bbox for bbox in all_bboxes if bbox[X0_IDX]>=start_x0 and bbox[X1_IDX]<=start_x1]
unsplited_bboxes.append(bboxes_in_block)
# 接着把未处理的加入到v_layouts里
for bboxes_in_block in unsplited_bboxes:
if len(bboxes_in_block) == 0:
continue
x0, y0, x1, y1 = min([bbox[X0_IDX] for bbox in bboxes_in_block]), bound_y0, max([bbox[X1_IDX] for bbox in bboxes_in_block]), bound_y1
v_layouts.append([x0, y0, x1, y1, LAYOUT_UNPROC]) # 说明这篇区域未能够分析出可靠的版面
v_layouts.sort(key=lambda x: x[0]) # 按照x0排序, 也就是从左到右的顺序
for layout in v_layouts:
sorted_layout_blocks.append({
"layout_bbox": layout[:4],
"layout_label":layout[4],
"sub_layout":[],
})
"""
至此,垂直方向切成了2种类型,其一是独占一列的,其二是未处理的。
下面对这些未处理的进行垂直方向切分,这个切分要切出来类似“吕”这种类型的垂直方向的布局
"""
for i, layout in enumerate(sorted_layout_blocks):
if layout['layout_label'] == LAYOUT_UNPROC:
x0, y0, x1, y1 = layout['layout_bbox']
v_split_layouts = _vertical_align_split_v2(bboxes, [x0, y0, x1, y1])
sorted_layout_blocks[i] = {
"layout_bbox": [x0, y0, x1, y1],
"layout_label": LAYOUT_H,
"sub_layout": v_split_layouts
}
layout['layout_label'] = LAYOUT_H # 被垂线切分成了水平布局
return sorted_layout_blocks
def split_layout(bboxes:list, boundry:tuple, page_num:int)-> list:
"""
把bboxes切割成layout
return:
[
{
"layout_bbox": [x0, y0, x1, y1],
"layout_label":"u|v|h|b", 未处理|垂直|水平|BAD_LAYOUT
"sub_layout": [] #每个元素都是[x0, y0, x1, y1, block_content, idx_x, idx_y, content_type, ext_x0, ext_y0, ext_x1, ext_y1], 并且顺序就是阅读顺序
}
]
example:
[
{
"layout_bbox": [0, 0, 100, 100],
"layout_label":"u|v|h|b",
"sub_layout":[
]
},
{
"layout_bbox": [0, 0, 100, 100],
"layout_label":"u|v|h|b",
"sub_layout":[
{
"layout_bbox": [0, 0, 100, 100],
"layout_label":"u|v|h|b",
"content_bboxes":[
[],
[],
[]
]
},
{
"layout_bbox": [0, 0, 100, 100],
"layout_label":"u|v|h|b",
"sub_layout":[
]
}
}
]
"""
sorted_layouts = [] # 最终返回的结果
boundry_x0, boundry_y0, boundry_x1, boundry_y1 = boundry
if len(bboxes) <=1:
return [
{
"layout_bbox": [boundry_x0, boundry_y0, boundry_x1, boundry_y1],
"layout_label": LAYOUT_V,
"sub_layout":[]
}
]
"""
接下来按照先水平后垂直的顺序进行切分
"""
bboxes = paper_bbox_sort(bboxes, boundry_x1-boundry_x0, boundry_y1-boundry_y0)
sorted_layouts = _horizontal_split(bboxes, boundry) # 通过水平分割出来的layout
for i, layout in enumerate(sorted_layouts):
x0, y0, x1, y1 = layout['layout_bbox']
layout_type = layout['layout_label']
if layout_type == LAYOUT_UNPROC: # 说明是非独占单行的,这些需要垂直切分
v_split_layouts = _vertical_split(bboxes, [x0, y0, x1, y1])
"""
最后这里有个逻辑问题:如果这个函数只分离出来了一个column layout,那么这个layout分割肯定超出了算法能力范围。因为我们假定的是传进来的
box已经把行全部剥离了,所以这里必须十多个列才可以。如果只剥离出来一个layout,并且是多个box,那么就说明这个layout是无法分割的,标记为LAYOUT_UNPROC
"""
layout_label = LAYOUT_V
if len(v_split_layouts) == 1:
if len(v_split_layouts[0]['sub_layout']) == 0:
layout_label = LAYOUT_UNPROC
#logger.warning(f"WARNING: pageno={page_num}, 无法分割的layout: ", v_split_layouts)
"""
组合起来最终的layout
"""
sorted_layouts[i] = {
"layout_bbox": [x0, y0, x1, y1],
"layout_label": layout_label,
"sub_layout": v_split_layouts
}
layout['layout_label'] = LAYOUT_H
"""
水平和垂直方向都切分完毕了。此时还有一些未处理的,这些未处理的可能是因为水平和垂直方向都无法切分。
这些最后调用_try_horizontal_mult_block_split做一次水平多个block的联合切分,如果也不能切分最终就当做BAD_LAYOUT返回
"""
# TODO
return sorted_layouts
def get_bboxes_layout(all_boxes:list, boundry:tuple, page_id:int):
"""
对利用layout排序之后的box,进行排序
return:
[
{
"layout_bbox": [x0, y0, x1, y1],
"layout_label":"u|v|h|b", 未处理|垂直|水平|BAD_LAYOUT
},
]
"""
def _preorder_traversal(layout):
"""
对sorted_layouts的叶子节点,也就是len(sub_layout)==0的节点进行排序。排序按照前序遍历的顺序,也就是从上到下,从左到右的顺序
"""
sorted_layout_blocks = []
for layout in layout:
sub_layout = layout['sub_layout']
if len(sub_layout) == 0:
sorted_layout_blocks.append(layout)
else:
s = _preorder_traversal(sub_layout)
sorted_layout_blocks.extend(s)
return sorted_layout_blocks
# -------------------------------------------------------------------------------------------------------------------------
sorted_layouts = split_layout(all_boxes, boundry, page_id)# 先切分成layout,得到一个Tree
total_sorted_layout_blocks = _preorder_traversal(sorted_layouts)
return total_sorted_layout_blocks, sorted_layouts
def get_columns_cnt_of_layout(layout_tree):
"""
获取一个layout的宽度
"""
max_width_list = [0] # 初始化一个元素,防止max,min函数报错
for items in layout_tree: # 针对每一层(横切)计算列数,横着的算一列
layout_type = items['layout_label']
sub_layouts = items['sub_layout']
if len(sub_layouts)==0:
max_width_list.append(1)
else:
if layout_type == LAYOUT_H:
max_width_list.append(1)
else:
width = 0
for l in sub_layouts:
if len(l['sub_layout']) == 0:
width += 1
else:
for lay in l['sub_layout']:
width += get_columns_cnt_of_layout([lay])
max_width_list.append(width)
return max(max_width_list)
def sort_with_layout(bboxes:list, page_width, page_height) -> (list,list):
"""
输入是一个bbox的list.
获取到输入之后,先进行layout切分,然后对这些bbox进行排序。返回排序后的bboxes
"""
new_bboxes = []
for box in bboxes:
# new_bboxes.append([box[0], box[1], box[2], box[3], None, None, None, 'text', None, None, None, None])
new_bboxes.append([box[0], box[1], box[2], box[3], None, None, None, 'text', None, None, None, None, box[4]])
layout_bboxes, _ = get_bboxes_layout(new_bboxes, [0, 0, page_width, page_height], 0)
if any([lay['layout_label']==LAYOUT_UNPROC for lay in layout_bboxes]):
logger.warning(f"drop this pdf, reason: 复杂版面")
return None,None
sorted_bboxes = []
# 利用layout bbox每次框定一些box,然后排序
for layout in layout_bboxes:
lbox = layout['layout_bbox']
bbox_in_layout = get_bbox_in_boundry(new_bboxes, lbox)
sorted_bbox = paper_bbox_sort(bbox_in_layout, lbox[2]-lbox[0], lbox[3]-lbox[1])
sorted_bboxes.extend(sorted_bbox)
return sorted_bboxes, layout_bboxes
def sort_text_block(text_block, layout_bboxes):
"""
对一页的text_block进行排序
"""
sorted_text_bbox = []
all_text_bbox = []
# 做一个box=>text的映射
box_to_text = {}
for blk in text_block:
box = blk['bbox']
box_to_text[(box[0], box[1], box[2], box[3])] = blk
all_text_bbox.append(box)
# text_blocks_to_sort = []
# for box in box_to_text.keys():
# text_blocks_to_sort.append([box[0], box[1], box[2], box[3], None, None, None, 'text', None, None, None, None])
# 按照layout_bboxes的顺序,对text_block进行排序
for layout in layout_bboxes:
layout_box = layout['layout_bbox']
text_bbox_in_layout = get_bbox_in_boundry(all_text_bbox, [layout_box[0]-1, layout_box[1]-1, layout_box[2]+1, layout_box[3]+1])
#sorted_bbox = paper_bbox_sort(text_bbox_in_layout, layout_box[2]-layout_box[0], layout_box[3]-layout_box[1])
text_bbox_in_layout.sort(key = lambda x: x[1]) # 一个layout内部的box,按照y0自上而下排序
#sorted_bbox = [[b] for b in text_blocks_to_sort]
for sb in text_bbox_in_layout:
sorted_text_bbox.append(box_to_text[(sb[0], sb[1], sb[2], sb[3])])
return sorted_text_bbox