MinerU / magic_pdf /pre_proc /citationmarker_remove.py
derful's picture
Upload folder using huggingface_hub
240e0a0 verified
"""
去掉正文的引文引用marker
https://aicarrier.feishu.cn/wiki/YLOPwo1PGiwFRdkwmyhcZmr0n3d
"""
import re
# from magic_pdf.libs.nlp_utils import NLPModels
# __NLP_MODEL = NLPModels()
def check_1(spans, cur_span_i):
"""寻找前一个char,如果是句号,逗号,那么就是角标"""
if cur_span_i==0:
return False # 不是角标
pre_span = spans[cur_span_i-1]
pre_char = pre_span['chars'][-1]['c']
if pre_char in ['。', ',', '.', ',']:
return True
return False
# def check_2(spans, cur_span_i):
# """检查前面一个span的最后一个单词,如果长度大于5,全都是字母,并且不含大写,就是角标"""
# pattern = r'\b[A-Z]\.\s[A-Z][a-z]*\b' # 形如A. Bcde, L. Bcde, 人名的缩写
#
# if cur_span_i==0 and len(spans)>1:
# next_span = spans[cur_span_i+1]
# next_txt = "".join([c['c'] for c in next_span['chars']])
# result = __NLP_MODEL.detect_entity_catgr_using_nlp(next_txt)
# if result in ["PERSON", "GPE", "ORG"]:
# return True
#
# if re.findall(pattern, next_txt):
# return True
#
# return False # 不是角标
# elif cur_span_i==0 and len(spans)==1: # 角标占用了整行?谨慎删除
# return False
#
# # 如果这个span是最后一个span,
# if cur_span_i==len(spans)-1:
# pre_span = spans[cur_span_i-1]
# pre_txt = "".join([c['c'] for c in pre_span['chars']])
# pre_word = pre_txt.split(' ')[-1]
# result = __NLP_MODEL.detect_entity_catgr_using_nlp(pre_txt)
# if result in ["PERSON", "GPE", "ORG"]:
# return True
#
# if re.findall(pattern, pre_txt):
# return True
#
# return len(pre_word) > 5 and pre_word.isalpha() and pre_word.islower()
# else: # 既不是第一个span,也不是最后一个span,那么此时检查一下这个角标距离前后哪个单词更近就属于谁的角标
# pre_span = spans[cur_span_i-1]
# next_span = spans[cur_span_i+1]
# cur_span = spans[cur_span_i]
# # 找到前一个和后一个span里的距离最近的单词
# pre_distance = 10000 # 一个很大的数
# next_distance = 10000 # 一个很大的数
# for c in pre_span['chars'][::-1]:
# if c['c'].isalpha():
# pre_distance = cur_span['bbox'][0] - c['bbox'][2]
# break
# for c in next_span['chars']:
# if c['c'].isalpha():
# next_distance = c['bbox'][0] - cur_span['bbox'][2]
# break
#
# if pre_distance<next_distance:
# belong_to_span = pre_span
# else:
# belong_to_span = next_span
#
# txt = "".join([c['c'] for c in belong_to_span['chars']])
# pre_word = txt.split(' ')[-1]
# result = __NLP_MODEL.detect_entity_catgr_using_nlp(txt)
# if result in ["PERSON", "GPE", "ORG"]:
# return True
#
# if re.findall(pattern, txt):
# return True
#
# return len(pre_word) > 5 and pre_word.isalpha() and pre_word.islower()
def check_3(spans, cur_span_i):
"""上标里有[], 有*, 有-, 有逗号"""
# 如[2-3],[22]
# 如 2,3,4
cur_span_txt = ''.join(c['c'] for c in spans[cur_span_i]['chars']).strip()
bad_char = ['[', ']', '*', ',']
if any([c in cur_span_txt for c in bad_char]) and any(character.isdigit() for character in cur_span_txt):
return True
# 如2-3, a-b
patterns = [r'\d+-\d+', r'[a-zA-Z]-[a-zA-Z]', r'[a-zA-Z],[a-zA-Z]']
for pattern in patterns:
match = re.match(pattern, cur_span_txt)
if match is not None:
return True
return False
def remove_citation_marker(with_char_text_blcoks):
for blk in with_char_text_blcoks:
for line in blk['lines']:
# 如果span里的个数少于2个,那只能忽略,角标不可能自己独占一行
if len(line['spans'])<=1:
continue
# 找到高度最高的span作为位置比较的基准
max_hi_span = line['spans'][0]['bbox']
min_font_sz = 10000 # line里最小的字体
max_font_sz = 0 # line里最大的字体
for s in line['spans']:
if max_hi_span[3]-max_hi_span[1]<s['bbox'][3]-s['bbox'][1]:
max_hi_span = s['bbox']
if min_font_sz>s['size']:
min_font_sz = s['size']
if max_font_sz<s['size']:
max_font_sz = s['size']
base_span_mid_y = (max_hi_span[3]+max_hi_span[1])/2
span_to_del = []
for i, span in enumerate(line['spans']):
span_hi = span['bbox'][3]-span['bbox'][1]
span_mid_y = (span['bbox'][3]+span['bbox'][1])/2
span_font_sz = span['size']
if max_font_sz-span_font_sz<1: # 先以字体过滤正文,如果是正文就不再继续判断了
continue
if (base_span_mid_y-span_mid_y)/span_hi>0.2 or (base_span_mid_y-span_mid_y>0 and abs(span_font_sz-min_font_sz)/min_font_sz<0.1):
"""
1. 它的前一个char如果是句号或者逗号的话,那么肯定是角标而不是公式
2. 如果这个角标的前面是一个单词(长度大于5)而不是任何大写或小写的短字母的话 应该也是角标
3. 上标里有数字和逗号或者数字+星号的组合,方括号,一般肯定就是角标了
4. 这个角标属于前文还是后文要根据距离来判断,如果距离前面的文本太近,那么就是前面的角标,否则就是后面的角标
"""
if (check_1(line['spans'], i) or
# check_2(line['spans'], i) or
check_3(line['spans'], i)
):
"""删除掉这个角标:删除这个span, 同时还要更新line的text"""
span_to_del.append(span)
if len(span_to_del)>0:
for span in span_to_del:
line['spans'].remove(span)
line['text'] = ''.join([c['c'] for s in line['spans'] for c in s['chars']])
return with_char_text_blcoks