import time import copy import base64 import cv2 import numpy as np from io import BytesIO from PIL import Image from paddleocr import PaddleOCR from paddleocr.ppocr.utils.logging import get_logger from paddleocr.ppocr.utils.utility import check_and_read, alpha_to_color, binarize_img from paddleocr.tools.infer.utility import draw_ocr_box_txt, get_rotate_crop_image, get_minarea_rect_crop logger = get_logger() def img_decode(content: bytes): np_arr = np.frombuffer(content, dtype=np.uint8) return cv2.imdecode(np_arr, cv2.IMREAD_UNCHANGED) def check_img(img): if isinstance(img, bytes): img = img_decode(img) if isinstance(img, str): image_file = img img, flag_gif, flag_pdf = check_and_read(image_file) if not flag_gif and not flag_pdf: with open(image_file, 'rb') as f: img_str = f.read() img = img_decode(img_str) if img is None: try: buf = BytesIO() image = BytesIO(img_str) im = Image.open(image) rgb = im.convert('RGB') rgb.save(buf, 'jpeg') buf.seek(0) image_bytes = buf.read() data_base64 = str(base64.b64encode(image_bytes), encoding="utf-8") image_decode = base64.b64decode(data_base64) img_array = np.frombuffer(image_decode, np.uint8) img = cv2.imdecode(img_array, cv2.IMREAD_COLOR) except: logger.error("error in loading image:{}".format(image_file)) return None if img is None: logger.error("error in loading image:{}".format(image_file)) return None if isinstance(img, np.ndarray) and len(img.shape) == 2: img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) return img def sorted_boxes(dt_boxes): """ Sort text boxes in order from top to bottom, left to right args: dt_boxes(array):detected text boxes with shape [4, 2] return: sorted boxes(array) with shape [4, 2] """ num_boxes = dt_boxes.shape[0] sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0])) _boxes = list(sorted_boxes) for i in range(num_boxes - 1): for j in range(i, -1, -1): if abs(_boxes[j + 1][0][1] - _boxes[j][0][1]) < 10 and \ (_boxes[j + 1][0][0] < _boxes[j][0][0]): tmp = _boxes[j] _boxes[j] = _boxes[j + 1] _boxes[j + 1] = tmp else: break return _boxes def formula_in_text(mf_bbox, text_bbox): x1, y1, x2, y2 = mf_bbox x3, y3 = text_bbox[0] x4, y4 = text_bbox[2] left_box, right_box = None, None same_line = abs((y1+y2)/2 - (y3+y4)/2) / abs(y4-y3) < 0.2 if not same_line: return False, left_box, right_box else: drop_origin = False left_x = x1 - 1 right_x = x2 + 1 if x3 < x1 and x2 < x4: drop_origin = True left_box = np.array([text_bbox[0], [left_x, text_bbox[1][1]], [left_x, text_bbox[2][1]], text_bbox[3]]).astype('float32') right_box = np.array([[right_x, text_bbox[0][1]], text_bbox[1], text_bbox[2], [right_x, text_bbox[3][1]]]).astype('float32') if x3 < x1 and x1 <= x4 <= x2: drop_origin = True left_box = np.array([text_bbox[0], [left_x, text_bbox[1][1]], [left_x, text_bbox[2][1]], text_bbox[3]]).astype('float32') if x1 <= x3 <= x2 and x2 < x4: drop_origin = True right_box = np.array([[right_x, text_bbox[0][1]], text_bbox[1], text_bbox[2], [right_x, text_bbox[3][1]]]).astype('float32') if x1 <= x3 < x4 <= x2: drop_origin = True return drop_origin, left_box, right_box def update_det_boxes(dt_boxes, mfdetrec_res): new_dt_boxes = dt_boxes for mf_box in mfdetrec_res: flag, left_box, right_box = False, None, None for idx, text_box in enumerate(new_dt_boxes): ret, left_box, right_box = formula_in_text(mf_box['bbox'], text_box) if ret: new_dt_boxes.pop(idx) if left_box is not None: new_dt_boxes.append(left_box) if right_box is not None: new_dt_boxes.append(right_box) break return new_dt_boxes class ModifiedPaddleOCR(PaddleOCR): def ocr(self, img, det=True, rec=True, cls=True, bin=False, inv=False, mfd_res=None, alpha_color=(255, 255, 255)): """ OCR with PaddleOCR args: img: img for OCR, support ndarray, img_path and list or ndarray det: use text detection or not. If False, only rec will be exec. Default is True rec: use text recognition or not. If False, only det will be exec. Default is True cls: use angle classifier or not. Default is True. If True, the text with rotation of 180 degrees can be recognized. If no text is rotated by 180 degrees, use cls=False to get better performance. Text with rotation of 90 or 270 degrees can be recognized even if cls=False. bin: binarize image to black and white. Default is False. inv: invert image colors. Default is False. alpha_color: set RGB color Tuple for transparent parts replacement. Default is pure white. """ assert isinstance(img, (np.ndarray, list, str, bytes)) if isinstance(img, list) and det == True: logger.error('When input a list of images, det must be false') exit(0) if cls == True and self.use_angle_cls == False: pass # logger.warning( # 'Since the angle classifier is not initialized, it will not be used during the forward process' # ) img = check_img(img) # for infer pdf file if isinstance(img, list): if self.page_num > len(img) or self.page_num == 0: self.page_num = len(img) imgs = img[:self.page_num] else: imgs = [img] def preprocess_image(_image): _image = alpha_to_color(_image, alpha_color) if inv: _image = cv2.bitwise_not(_image) if bin: _image = binarize_img(_image) return _image if det and rec: ocr_res = [] for idx, img in enumerate(imgs): img = preprocess_image(img) dt_boxes, rec_res, _ = self.__call__(img, cls, mfd_res=mfd_res) if not dt_boxes and not rec_res: ocr_res.append(None) continue tmp_res = [[box.tolist(), res] for box, res in zip(dt_boxes, rec_res)] ocr_res.append(tmp_res) return ocr_res elif det and not rec: ocr_res = [] for idx, img in enumerate(imgs): img = preprocess_image(img) dt_boxes, elapse = self.text_detector(img) if not dt_boxes: ocr_res.append(None) continue tmp_res = [box.tolist() for box in dt_boxes] ocr_res.append(tmp_res) return ocr_res else: ocr_res = [] cls_res = [] for idx, img in enumerate(imgs): if not isinstance(img, list): img = preprocess_image(img) img = [img] if self.use_angle_cls and cls: img, cls_res_tmp, elapse = self.text_classifier(img) if not rec: cls_res.append(cls_res_tmp) rec_res, elapse = self.text_recognizer(img) ocr_res.append(rec_res) if not rec: return cls_res return ocr_res def __call__(self, img, cls=True, mfd_res=None): time_dict = {'det': 0, 'rec': 0, 'cls': 0, 'all': 0} if img is None: logger.debug("no valid image provided") return None, None, time_dict start = time.time() ori_im = img.copy() dt_boxes, elapse = self.text_detector(img) time_dict['det'] = elapse if dt_boxes is None: logger.debug("no dt_boxes found, elapsed : {}".format(elapse)) end = time.time() time_dict['all'] = end - start return None, None, time_dict else: logger.debug("dt_boxes num : {}, elapsed : {}".format( len(dt_boxes), elapse)) img_crop_list = [] dt_boxes = sorted_boxes(dt_boxes) if mfd_res: bef = time.time() dt_boxes = update_det_boxes(dt_boxes, mfd_res) aft = time.time() logger.debug("split text box by formula, new dt_boxes num : {}, elapsed : {}".format( len(dt_boxes), aft-bef)) for bno in range(len(dt_boxes)): tmp_box = copy.deepcopy(dt_boxes[bno]) if self.args.det_box_type == "quad": img_crop = get_rotate_crop_image(ori_im, tmp_box) else: img_crop = get_minarea_rect_crop(ori_im, tmp_box) img_crop_list.append(img_crop) if self.use_angle_cls and cls: img_crop_list, angle_list, elapse = self.text_classifier( img_crop_list) time_dict['cls'] = elapse logger.debug("cls num : {}, elapsed : {}".format( len(img_crop_list), elapse)) rec_res, elapse = self.text_recognizer(img_crop_list) time_dict['rec'] = elapse logger.debug("rec_res num : {}, elapsed : {}".format( len(rec_res), elapse)) if self.args.save_crop_res: self.draw_crop_rec_res(self.args.crop_res_save_dir, img_crop_list, rec_res) filter_boxes, filter_rec_res = [], [] for box, rec_result in zip(dt_boxes, rec_res): text, score = rec_result if score >= self.drop_score: filter_boxes.append(box) filter_rec_res.append(rec_result) end = time.time() time_dict['all'] = end - start return filter_boxes, filter_rec_res, time_dict