Spaces:
Runtime error
Runtime error
File size: 4,150 Bytes
6f6fd13 9fbfaa6 6f6fd13 57047e5 6f6fd13 9fbfaa6 6f6fd13 84d4ed6 6f6fd13 9fbfaa6 6f6fd13 9fbfaa6 6f6fd13 9fbfaa6 6f6fd13 57047e5 6f6fd13 9fbfaa6 6f6fd13 9fbfaa6 6f6fd13 57047e5 6f6fd13 9fbfaa6 6f6fd13 9fbfaa6 6f6fd13 9fbfaa6 6f6fd13 9fbfaa6 6f6fd13 9fbfaa6 6f6fd13 9fbfaa6 6f6fd13 57047e5 6f6fd13 57047e5 6f6fd13 57047e5 6f6fd13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
from pathlib import Path
import argbind
from tqdm import tqdm
import torch
from vampnet.interface import Interface
import audiotools as at
Interface = argbind.bind(Interface)
# condition wrapper for printing
def condition(cond):
def wrapper(sig, interface):
print(f"Condition: {cond.__name__}")
sig = cond(sig, interface)
print(f"Condition: {cond.__name__} (done)\n")
return sig
return wrapper
@condition
def baseline(sig, interface):
return interface.preprocess(sig)
@condition
def reconstructed(sig, interface):
return interface.to_signal(
interface.encode(sig)
)
@condition
def coarse2fine(sig, interface):
z = interface.encode(sig)
z = z[:, :interface.c2f.n_conditioning_codebooks, :]
z = interface.coarse_to_fine(z)
return interface.to_signal(z)
@condition
def coarse2fine_argmax(sig, interface):
z = interface.encode(sig)
z = z[:, :interface.c2f.n_conditioning_codebooks, :]
z = interface.coarse_to_fine(z,
sample="argmax", sampling_steps=1,
temperature=1.0
)
return interface.to_signal(z)
@condition
def one_codebook(sig, interface):
z = interface.encode(sig)
nb, _, nt = z.shape
nc = interface.coarse.n_codebooks
mask = torch.zeros(nb, nc, nt).to(interface.device)
mask[:, 1:, :] = 1
zv = interface.coarse_vamp_v2(
sig, ext_mask=mask,
)
zv = interface.coarse_to_fine(zv)
return interface.to_signal(zv)
@condition
def four_codebooks_downsampled_4x(sig, interface):
zv = interface.coarse_vamp_v2(
sig, downsample_factor=4
)
zv = interface.coarse_to_fine(zv)
return interface.to_signal(zv)
@condition
def two_codebooks_downsampled_4x(sig, interface):
z = interface.encode(sig)
nb, _, nt = z.shape
nc = interface.coarse.n_codebooks
mask = torch.zeros(nb, nc, nt).to(interface.device)
mask[:, 2:, :] = 1
zv = interface.coarse_vamp_v2(
sig, ext_mask=mask, downsample_factor=4
)
zv = interface.coarse_to_fine(zv)
return interface.to_signal(zv)
@condition
def four_codebooks_downsampled_8x(sig, interface):
zv = interface.coarse_vamp_v2(
sig, downsample_factor=8
)
zv = interface.coarse_to_fine(zv)
return interface.to_signal(zv)
COARSE_SAMPLE_CONDS ={
"baseline": baseline,
"reconstructed": reconstructed,
"coarse2fine": coarse2fine,
"one_codebook": one_codebook,
"four_codebooks_downsampled_4x": four_codebooks_downsampled_4x,
"two_codebooks_downsampled_4x": two_codebooks_downsampled_4x,
"four_codebooks_downsampled_8x": four_codebooks_downsampled_8x,
}
C2F_SAMPLE_CONDS = {
"baseline": baseline,
"reconstructed": reconstructed,
"coarse2fine": coarse2fine,
"coarse2fine_argmax": coarse2fine_argmax,
}
@argbind.bind(without_prefix=True)
def main(
sources=[
"/data/spotdl/audio/val", "/data/spotdl/audio/test"
],
output_dir: str = "./samples",
max_excerpts: int = 5000,
exp_type: str = "coarse",
seed: int = 0,
):
at.util.seed(seed)
interface = Interface()
output_dir = Path(output_dir)
output_dir.mkdir(exist_ok=True, parents=True)
from audiotools.data.datasets import AudioLoader, AudioDataset
loader = AudioLoader(sources=sources)
dataset = AudioDataset(loader,
sample_rate=interface.codec.sample_rate,
duration=interface.coarse.chunk_size_s,
n_examples=max_excerpts,
without_replacement=True,
)
SAMPLE_CONDS = COARSE_SAMPLE_CONDS if exp_type == "coarse" else C2F_SAMPLE_CONDS
for i in tqdm(range(max_excerpts)):
sig = dataset[i]["signal"]
results = {
name: cond(sig, interface).cpu()
for name, cond in SAMPLE_CONDS.items()
}
for name, sig in results.items():
o_dir = Path(output_dir) / name
o_dir.mkdir(exist_ok=True, parents=True)
sig.write(o_dir / f"{i}.wav")
if __name__ == "__main__":
args = argbind.parse_args()
with argbind.scope(args):
main()
|