Spaces:
Runtime error
Runtime error
pipeline
Browse files- app.py +27 -2
- requirements.txt +3 -0
app.py
CHANGED
@@ -1,4 +1,29 @@
|
|
1 |
import streamlit as st
|
|
|
|
|
2 |
|
3 |
-
x = st.slider('Select a value')
|
4 |
-
st.write(x, 'squared is', x * x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import safetensors
|
3 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
|
4 |
|
5 |
+
# x = st.slider('Select a value')
|
6 |
+
# st.write(x, 'squared is', x * x)
|
7 |
+
|
8 |
+
name = 'KoalaAI/Text-Moderation'
|
9 |
+
model = AutoModelForSequenceClassification.from_pretrained(name, num_labels=1, ignore_mismatched_sizes=True)
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(name)
|
11 |
+
|
12 |
+
d = {}
|
13 |
+
with safetensors.safe_open("model.safetensors", framework="pt", device='cpu') as f:
|
14 |
+
for k in f.keys():
|
15 |
+
d[k] = f.get_tensor(k)
|
16 |
+
|
17 |
+
model.load_state_dict(d)
|
18 |
+
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer, device='cpu')
|
19 |
+
|
20 |
+
text = st.text_area("enter the text")
|
21 |
+
|
22 |
+
if text:
|
23 |
+
out = pipe(text)
|
24 |
+
score = out['score'] * 4 - 2
|
25 |
+
if score >= 0.5:
|
26 |
+
label = 'not OK'
|
27 |
+
else:
|
28 |
+
label = 'OK'
|
29 |
+
st.json({'label' : label, 'score' : score})
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
safetensors
|