|
from .payload_model import SingleInferencePayload, VideoInferencePayload |
|
from transformers import AutoModelForVision2Seq, AutoTokenizer, AutoProcessor |
|
from qwen_vl_utils import process_vision_info |
|
from pydantic import BaseModel |
|
from typing import Optional |
|
|
|
|
|
class Qwen2_5(BaseModel): |
|
model: Optional[AutoModelForVision2Seq] = None |
|
tokenizer: Optional[AutoTokenizer] = None |
|
processor: Optional[AutoProcessor] = None |
|
|
|
model_config = { |
|
"arbitrary_types_allowed": True, |
|
"from_attributes": True |
|
} |
|
|
|
def __init__(self, model_path: str): |
|
super().__init__() |
|
self.model = AutoModelForVision2Seq.from_pretrained( |
|
model_path, torch_dtype="auto", device_map="auto" |
|
) |
|
self.tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
self.processor = AutoProcessor.from_pretrained(model_path) |
|
|
|
def prepare_single_inference(self, image: str, question: str): |
|
image = f"data:image;base64,{image}" |
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{ |
|
"type": "text", |
|
"image": image, |
|
|
|
}, |
|
{ |
|
"type": "text", |
|
"text": question |
|
}, |
|
], |
|
} |
|
] |
|
text = self.processor.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
image_inputs, video_inputs = process_vision_info(messages) |
|
inputs = self.processor( |
|
text=[text], |
|
images=image_inputs, |
|
videos=video_inputs, |
|
padding=True, |
|
return_tensors="pt", |
|
) |
|
inputs = inputs.to("cuda") |
|
|
|
return inputs |
|
|
|
def prepare_video_inference(self, video: list[str], question: str): |
|
base64_videos = [] |
|
for frame in video: |
|
base64_videos.append(f"data:image;base64,{frame}") |
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{ |
|
"type": "video", |
|
"video": base64_videos, |
|
}, |
|
{ |
|
"type": "text", |
|
"text": question |
|
}, |
|
], |
|
} |
|
] |
|
text = self.processor.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
image_inputs, video_inputs = process_vision_info(messages) |
|
inputs = self.processor( |
|
text=[text], |
|
images=image_inputs, |
|
videos=video_inputs, |
|
fps=1.0, |
|
padding=True, |
|
return_tensors="pt", |
|
) |
|
inputs = inputs.to("cuda") |
|
return inputs |
|
|
|
def get_single_inference(self, payload: SingleInferencePayload): |
|
try: |
|
processed_inputs = self.prepare_single_inference(payload.image_path, payload.question) |
|
generated_ids = self.model.generate(**processed_inputs, max_new_tokens=128) |
|
generated_ids_trimmed = [ |
|
out_ids[len(in_ids) :] for in_ids, out_ids in zip(processed_inputs.input_ids, generated_ids) |
|
] |
|
output_text = self.processor.batch_decode( |
|
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
) |
|
print(f"Model generated text: {output_text}") |
|
return { |
|
"message": output_text, |
|
"status": 200 |
|
} |
|
except Exception as e: |
|
return { |
|
"message": str(e), |
|
"status": 500 |
|
} |
|
|
|
def get_video_inference(self, payload: VideoInferencePayload): |
|
try: |
|
processed_inputs = self.prepare_video_inference(payload.video_path, payload.question) |
|
generated_ids = self.model.generate(**processed_inputs, max_new_tokens=128) |
|
generated_ids_trimmed = [ |
|
out_ids[len(in_ids) :] for in_ids, out_ids in zip(processed_inputs.input_ids, generated_ids) |
|
] |
|
output_text = self.processor.batch_decode( |
|
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
) |
|
print(f"Model generated text: {output_text}") |
|
return { |
|
"message": output_text, |
|
"status": 200 |
|
} |
|
except Exception as e: |
|
return { |
|
"message": str(e), |
|
"status": 500 |
|
} |