Qwen-VL-Instruct-Backend / src /utils /qwen_inference.py
Lemorra's picture
πŸ› Fixed the bug for unexpected keyword
655d5ae
from .payload_model import SingleInferencePayload, VideoInferencePayload
from transformers import AutoModelForVision2Seq, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
from pydantic import BaseModel
from typing import Optional
class Qwen2_5(BaseModel):
model: Optional[AutoModelForVision2Seq] = None
tokenizer: Optional[AutoTokenizer] = None
processor: Optional[AutoProcessor] = None
model_config = {
"arbitrary_types_allowed": True,
"from_attributes": True
}
def __init__(self, model_path: str):
super().__init__()
self.model = AutoModelForVision2Seq.from_pretrained(
model_path, torch_dtype="auto", device_map="auto"
)
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
self.processor = AutoProcessor.from_pretrained(model_path)
def prepare_single_inference(self, image: str, question: str):
image = f"data:image;base64,{image}"
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"image": image,
},
{
"type": "text",
"text": question
},
],
}
]
text = self.processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = self.processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
return inputs
def prepare_video_inference(self, video: list[str], question: str):
base64_videos = []
for frame in video:
base64_videos.append(f"data:image;base64,{frame}")
messages = [
{
"role": "user",
"content": [
{
"type": "video",
"video": base64_videos,
},
{
"type": "text",
"text": question
},
],
}
]
text = self.processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = self.processor(
text=[text],
images=image_inputs,
videos=video_inputs,
fps=1.0,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
return inputs
def get_single_inference(self, payload: SingleInferencePayload):
try:
processed_inputs = self.prepare_single_inference(payload.image_path, payload.question)
generated_ids = self.model.generate(**processed_inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(processed_inputs.input_ids, generated_ids)
]
output_text = self.processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(f"Model generated text: {output_text}")
return {
"message": output_text,
"status": 200
}
except Exception as e:
return {
"message": str(e),
"status": 500
}
def get_video_inference(self, payload: VideoInferencePayload):
try:
processed_inputs = self.prepare_video_inference(payload.video_path, payload.question)
generated_ids = self.model.generate(**processed_inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(processed_inputs.input_ids, generated_ids)
]
output_text = self.processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(f"Model generated text: {output_text}")
return {
"message": output_text,
"status": 200
}
except Exception as e:
return {
"message": str(e),
"status": 500
}