Spaces:
Sleeping
Sleeping
from transformers import AutoModel, AutoTokenizer | |
import torch | |
from payload_model import PayloadModel | |
from internvl_utils import load_image | |
from pydantic import BaseModel, Field | |
from typing import Optional | |
class InternVL3(BaseModel): | |
model_name: str | |
model: Optional[AutoModel] = None | |
tokenizer: Optional[AutoTokenizer] = None | |
generation_config: dict = Field(default_factory=lambda: {"max_new_tokens": 1024, "do_sample": True}) | |
model_config = { | |
"arbitrary_types_allowed": True, | |
"from_attributes": True | |
} | |
def __init__(self, model_name: str, **kwargs): | |
super().__init__(model_name=model_name, **kwargs) | |
self.model = AutoModel.from_pretrained( | |
self.model_name, | |
torch_dtype=torch.bfloat16, | |
load_in_8bit=False, | |
low_cpu_mem_usage=True, | |
use_flash_attn=True, | |
trust_remote_code=True, | |
device_map="auto", | |
).eval() | |
self.tokenizer = AutoTokenizer.from_pretrained( | |
self.model_name, | |
trust_remote_code=True, | |
use_fast=False, | |
) | |
def get_query_prompt(self, prompt_keyword: str): | |
if prompt_keyword == "person_running": | |
query_prompt = """ | |
<image>\nCheck if person is running or not? If they are running | |
respond with "Yes" else respond with "No". Limit your response to either "Yes" or "No" | |
""" | |
else: | |
query_prompt = None | |
return query_prompt | |
def predict(self, payload: PayloadModel): | |
pixel_values = load_image(payload.image) | |
query_prompt = self.get_query_prompt(payload.prompt_keyword) | |
if query_prompt is None: | |
model_response = f"Invalid prompt keyword: {payload.prompt_keyword}" | |
else: | |
model_response = self.model.chat( | |
self.tokenizer, | |
pixel_values, | |
query_prompt, | |
generation_config=self.generation_config, | |
) | |
return model_response | |
def extract_model_response(self, model_response: str): | |
return "Yes" in model_response | |
async def __call__(self, payload: PayloadModel): | |
model_response = self.predict(payload) | |
extracted_response = self.extract_model_response(model_response) | |
return extracted_response | |