Spaces:
Sleeping
Sleeping
from transformers import AutoModel, AutoTokenizer | |
import torch | |
from payload_model import PayloadModel | |
from internvl_utils import load_image | |
from pydantic import BaseModel, Field | |
from typing import Optional | |
import PIL | |
class InternVL3(BaseModel): | |
model_name: str | |
model: Optional[AutoModel] = None | |
tokenizer: Optional[AutoTokenizer] = None | |
generation_config: dict = Field(default_factory=lambda: {"max_new_tokens": 1024, "do_sample": True}) | |
model_config = { | |
"arbitrary_types_allowed": True, | |
"from_attributes": True | |
} | |
def __init__(self, model_name: str, **kwargs): | |
super().__init__(model_name=model_name, **kwargs) | |
self.model = AutoModel.from_pretrained( | |
self.model_name, | |
torch_dtype=torch.bfloat16, | |
load_in_8bit=False, | |
low_cpu_mem_usage=True, | |
use_flash_attn=True, | |
trust_remote_code=True, | |
device_map="cuda" if torch.cuda.is_available() else "cpu", | |
).eval() | |
self.tokenizer = AutoTokenizer.from_pretrained( | |
self.model_name, | |
trust_remote_code=True, | |
use_fast=False, | |
) | |
def get_query_prompt(self, prompt_keyword: str): | |
if prompt_keyword.lower() == "person_running": | |
query_prompt = """ | |
<image>\nCheck if person is running or not? If they are running | |
respond with "Yes" else respond with "No". Limit your response to either "Yes" or "No" | |
""" | |
else: | |
query_prompt = None | |
return query_prompt | |
def predict(self, pil_image: PIL.Image.Image, prompt_keyword: str): | |
pixel_values = load_image(pil_image) | |
query_prompt = self.get_query_prompt(prompt_keyword) | |
if query_prompt is None: | |
model_response = f"Invalid prompt keyword: {prompt_keyword}" | |
else: | |
model_response = self.model.chat( | |
self.tokenizer, | |
pixel_values, | |
query_prompt, | |
generation_config=self.generation_config, | |
) | |
return model_response | |
def eval_or(self, images: list[PIL.Image.Image], prompt_keyword: str): | |
model_responses = [] | |
for image in images: | |
model_response = self.predict(image, prompt_keyword) | |
model_responses.append(model_response) | |
if self.extract_model_response(model_response): | |
return True, model_responses | |
return False, model_responses | |
def eval_and(self, images: list[PIL.Image.Image], prompt_keyword: str): | |
model_responses = [] | |
for image in images: | |
model_response = self.predict(image, prompt_keyword) | |
model_responses.append(model_response) | |
if not self.extract_model_response(model_response): | |
return False, model_responses | |
return True, model_responses | |
def extract_model_response(self, model_response: str): | |
return "Yes" in model_response | |
async def __call__(self, images: list[PIL.Image.Image], prompt_keyword: str, prompt_eval_mode: str): | |
overall_response = False | |
if prompt_eval_mode == "or": | |
overall_response, model_responses = self.eval_or(images, prompt_keyword) | |
elif prompt_eval_mode == "and": | |
overall_response, model_responses = self.eval_and(images, prompt_keyword) | |
else: | |
raise ValueError(f"Invalid prompt eval mode: {prompt_eval_mode}") | |
print(f"Model responses: {model_responses}") | |
return overall_response | |