Spaces:
Sleeping
Sleeping
InternVL3-1B model app
Browse files- Dockerfile +13 -0
- app.py +25 -0
- authenticator.py +21 -0
- internvl_utils.py +115 -0
- models/InternVL3/__pycache__/intervl3.cpython-310.pyc +0 -0
- models/InternVL3/intervl3.py +68 -0
- models/__init__.py +2 -0
- models/__pycache__/__init__.cpython-310.pyc +0 -0
- models/__pycache__/misc_utils.cpython-310.pyc +0 -0
- models/misc_utils.py +15 -0
- payload_model.py +6 -0
- requirements.txt +13 -0
Dockerfile
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.10
|
2 |
+
|
3 |
+
RUN useradd -m -u 1000 user
|
4 |
+
USER user
|
5 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
6 |
+
|
7 |
+
WORKDIR /app
|
8 |
+
|
9 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
10 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
11 |
+
|
12 |
+
COPY --chown=user . /app
|
13 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from fastapi import FastAPI, Depends
|
3 |
+
from fastapi.responses import JSONResponse
|
4 |
+
from authenticator import authenticate_token
|
5 |
+
from payload_model import PayloadModel
|
6 |
+
from models import InternVL3
|
7 |
+
from internvl_utils import internvl_inference
|
8 |
+
|
9 |
+
|
10 |
+
app = FastAPI()
|
11 |
+
|
12 |
+
model = InternVL3("OpenGVLab/InternVL3-1B-Instruct")
|
13 |
+
|
14 |
+
@app.get("/healthcheck")
|
15 |
+
def healthcheck():
|
16 |
+
return JSONResponse(status_code=200, content={"status": "ok"})
|
17 |
+
|
18 |
+
@app.post("/internvl_inference")
|
19 |
+
async def inference(payload: PayloadModel, token: str = Depends(authenticate_token)):
|
20 |
+
try:
|
21 |
+
model_response = await internvl_inference(model, payload)
|
22 |
+
return JSONResponse(status_code=200, content={"status": "ok", "response": model_response})
|
23 |
+
except Exception as e:
|
24 |
+
print(f"Error: {e}")
|
25 |
+
return JSONResponse(status_code=500, content={"status": "error", "message": str(e)})
|
authenticator.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import Header, HTTPException
|
2 |
+
import os
|
3 |
+
import jwt
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
|
6 |
+
load_dotenv()
|
7 |
+
|
8 |
+
secret_token = os.getenv("AUTH_TOKEN")
|
9 |
+
|
10 |
+
async def authenticate_token(authorization: str = Header(...)):
|
11 |
+
token_type, token = authorization.split()
|
12 |
+
if token_type != "Bearer":
|
13 |
+
raise HTTPException(status_code=401, detail="Unauthorized")
|
14 |
+
try:
|
15 |
+
return jwt.decode(token, secret_token, algorithms=["HS256"])
|
16 |
+
except jwt.ExpiredSignatureError:
|
17 |
+
raise HTTPException(status_code=401, detail="Token has expired") from None
|
18 |
+
except (jwt.InvalidTokenError, IndexError):
|
19 |
+
raise HTTPException(status_code=401, detail="Invalid token") from None
|
20 |
+
|
21 |
+
|
internvl_utils.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import torchvision.transforms as T
|
5 |
+
from torchvision.transforms.functional import InterpolationMode
|
6 |
+
from transformers import AutoConfig
|
7 |
+
from models import InternVL3
|
8 |
+
from payload_model import PayloadModel
|
9 |
+
from models.misc_utils import convert_base64_to_pil
|
10 |
+
|
11 |
+
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
12 |
+
IMAGENET_STD = (0.229, 0.224, 0.225)
|
13 |
+
|
14 |
+
|
15 |
+
def build_transform(input_size):
|
16 |
+
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
|
17 |
+
transform = T.Compose([
|
18 |
+
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
|
19 |
+
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
|
20 |
+
T.ToTensor(),
|
21 |
+
T.Normalize(mean=MEAN, std=STD)
|
22 |
+
])
|
23 |
+
return transform
|
24 |
+
|
25 |
+
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
26 |
+
best_ratio_diff = float('inf')
|
27 |
+
best_ratio = (1, 1)
|
28 |
+
area = width * height
|
29 |
+
for ratio in target_ratios:
|
30 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
31 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
32 |
+
if ratio_diff < best_ratio_diff:
|
33 |
+
best_ratio_diff = ratio_diff
|
34 |
+
best_ratio = ratio
|
35 |
+
elif ratio_diff == best_ratio_diff:
|
36 |
+
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
37 |
+
best_ratio = ratio
|
38 |
+
return best_ratio
|
39 |
+
|
40 |
+
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
|
41 |
+
orig_width, orig_height = image.size
|
42 |
+
aspect_ratio = orig_width / orig_height
|
43 |
+
|
44 |
+
# calculate the existing image aspect ratio
|
45 |
+
target_ratios = set(
|
46 |
+
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
47 |
+
i * j <= max_num and i * j >= min_num)
|
48 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
49 |
+
|
50 |
+
# find the closest aspect ratio to the target
|
51 |
+
target_aspect_ratio = find_closest_aspect_ratio(
|
52 |
+
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
53 |
+
|
54 |
+
# calculate the target width and height
|
55 |
+
target_width = image_size * target_aspect_ratio[0]
|
56 |
+
target_height = image_size * target_aspect_ratio[1]
|
57 |
+
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
58 |
+
|
59 |
+
# resize the image
|
60 |
+
resized_img = image.resize((target_width, target_height))
|
61 |
+
processed_images = []
|
62 |
+
for i in range(blocks):
|
63 |
+
box = (
|
64 |
+
(i % (target_width // image_size)) * image_size,
|
65 |
+
(i // (target_width // image_size)) * image_size,
|
66 |
+
((i % (target_width // image_size)) + 1) * image_size,
|
67 |
+
((i // (target_width // image_size)) + 1) * image_size
|
68 |
+
)
|
69 |
+
# split the image
|
70 |
+
split_img = resized_img.crop(box)
|
71 |
+
processed_images.append(split_img)
|
72 |
+
assert len(processed_images) == blocks
|
73 |
+
if use_thumbnail and len(processed_images) != 1:
|
74 |
+
thumbnail_img = image.resize((image_size, image_size))
|
75 |
+
processed_images.append(thumbnail_img)
|
76 |
+
return processed_images
|
77 |
+
|
78 |
+
def load_image(image, input_size=448, max_num=12):
|
79 |
+
# image = Image.open(image_file).convert('RGB')
|
80 |
+
pil_image = convert_base64_to_pil(image)
|
81 |
+
transform = build_transform(input_size=input_size)
|
82 |
+
images = dynamic_preprocess(pil_image, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
83 |
+
pixel_values = [transform(image) for image in images]
|
84 |
+
pixel_values = torch.stack(pixel_values)
|
85 |
+
pixel_values = pixel_values.to(torch.bfloat16).to("cuda")
|
86 |
+
return pixel_values
|
87 |
+
|
88 |
+
def split_model(model_name):
|
89 |
+
device_map = {}
|
90 |
+
world_size = torch.cuda.device_count()
|
91 |
+
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
|
92 |
+
num_layers = config.llm_config.num_hidden_layers
|
93 |
+
# Since the first GPU will be used for ViT, treat it as half a GPU.
|
94 |
+
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
|
95 |
+
num_layers_per_gpu = [num_layers_per_gpu] * world_size
|
96 |
+
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
|
97 |
+
layer_cnt = 0
|
98 |
+
for i, num_layer in enumerate(num_layers_per_gpu):
|
99 |
+
for j in range(num_layer):
|
100 |
+
device_map[f'language_model.model.layers.{layer_cnt}'] = i
|
101 |
+
layer_cnt += 1
|
102 |
+
device_map['vision_model'] = 0
|
103 |
+
device_map['mlp1'] = 0
|
104 |
+
device_map['language_model.model.tok_embeddings'] = 0
|
105 |
+
device_map['language_model.model.embed_tokens'] = 0
|
106 |
+
device_map['language_model.output'] = 0
|
107 |
+
device_map['language_model.model.norm'] = 0
|
108 |
+
device_map['language_model.model.rotary_emb'] = 0
|
109 |
+
device_map['language_model.lm_head'] = 0
|
110 |
+
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
|
111 |
+
|
112 |
+
return device_map
|
113 |
+
|
114 |
+
async def internvl_inference(model: InternVL3, payload: PayloadModel):
|
115 |
+
return await model(payload)
|
models/InternVL3/__pycache__/intervl3.cpython-310.pyc
ADDED
Binary file (2.62 kB). View file
|
|
models/InternVL3/intervl3.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModel, AutoTokenizer
|
2 |
+
import torch
|
3 |
+
from payload_model import PayloadModel
|
4 |
+
from internvl_utils import load_image
|
5 |
+
from pydantic import BaseModel, Field
|
6 |
+
from typing import Optional
|
7 |
+
|
8 |
+
class InternVL3(BaseModel):
|
9 |
+
model_name: str
|
10 |
+
model: Optional[AutoModel] = None
|
11 |
+
tokenizer: Optional[AutoTokenizer] = None
|
12 |
+
generation_config: dict = Field(default_factory=lambda: {"max_new_tokens": 1024, "do_sample": True})
|
13 |
+
|
14 |
+
model_config = {
|
15 |
+
"arbitrary_types_allowed": True,
|
16 |
+
"from_attributes": True
|
17 |
+
}
|
18 |
+
|
19 |
+
def __init__(self, model_name: str, **kwargs):
|
20 |
+
super().__init__(model_name=model_name, **kwargs)
|
21 |
+
self.model = AutoModel.from_pretrained(
|
22 |
+
self.model_name,
|
23 |
+
torch_dtype=torch.bfloat16,
|
24 |
+
load_in_8bit=False,
|
25 |
+
low_cpu_mem_usage=True,
|
26 |
+
use_flash_attn=True,
|
27 |
+
trust_remote_code=True,
|
28 |
+
device_map="auto",
|
29 |
+
).eval()
|
30 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
31 |
+
self.model_name,
|
32 |
+
trust_remote_code=True,
|
33 |
+
use_fast=False,
|
34 |
+
)
|
35 |
+
|
36 |
+
def get_query_prompt(self, prompt_keyword: str):
|
37 |
+
if prompt_keyword == "person_running":
|
38 |
+
query_prompt = """
|
39 |
+
<image>\nCheck if person is running or not? If they are running
|
40 |
+
respond with "Yes" else respond with "No". Limit your response to either "Yes" or "No"
|
41 |
+
"""
|
42 |
+
else:
|
43 |
+
query_prompt = None
|
44 |
+
return query_prompt
|
45 |
+
|
46 |
+
def predict(self, payload: PayloadModel):
|
47 |
+
pixel_values = load_image(payload.image)
|
48 |
+
query_prompt = self.get_query_prompt(payload.prompt_keyword)
|
49 |
+
if query_prompt is None:
|
50 |
+
model_response = f"Invalid prompt keyword: {payload.prompt_keyword}"
|
51 |
+
else:
|
52 |
+
model_response = self.model.chat(
|
53 |
+
self.tokenizer,
|
54 |
+
pixel_values,
|
55 |
+
query_prompt,
|
56 |
+
generation_config=self.generation_config,
|
57 |
+
)
|
58 |
+
|
59 |
+
return model_response
|
60 |
+
|
61 |
+
def extract_model_response(self, model_response: str):
|
62 |
+
return "Yes" in model_response
|
63 |
+
|
64 |
+
async def __call__(self, payload: PayloadModel):
|
65 |
+
model_response = self.predict(payload)
|
66 |
+
extracted_response = self.extract_model_response(model_response)
|
67 |
+
return extracted_response
|
68 |
+
|
models/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .InternVL3.intervl3 import InternVL3
|
2 |
+
from .misc_utils import *
|
models/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (267 Bytes). View file
|
|
models/__pycache__/misc_utils.cpython-310.pyc
ADDED
Binary file (830 Bytes). View file
|
|
models/misc_utils.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import base64
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
|
7 |
+
def convert_base64_to_cv2(base64_string: str):
|
8 |
+
return cv2.imdecode(np.frombuffer(base64.b64decode(base64_string), np.uint8), cv2.IMREAD_COLOR)
|
9 |
+
|
10 |
+
def convert_cv2_to_pil(image: np.ndarray):
|
11 |
+
return Image.fromarray(image).convert('RGB')
|
12 |
+
|
13 |
+
def convert_base64_to_pil(base64_string: str):
|
14 |
+
return convert_cv2_to_pil(convert_base64_to_cv2(base64_string))
|
15 |
+
|
payload_model.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pydantic import BaseModel
|
2 |
+
|
3 |
+
class PayloadModel(BaseModel):
|
4 |
+
"""Type check for payload parameters"""
|
5 |
+
image: str
|
6 |
+
prompt_keyword: str
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn[standard]
|
3 |
+
transformers>=4.37.2
|
4 |
+
decord
|
5 |
+
numpy~=1.26.4
|
6 |
+
torch
|
7 |
+
torchvision
|
8 |
+
pillow
|
9 |
+
PyJWT
|
10 |
+
opencv-python==4.9.0.80
|
11 |
+
einops
|
12 |
+
timm
|
13 |
+
accelerate
|